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This report will study the matter of applying stochastic optimization techniques
to solve optimal transport problems in the discrete and semi-discrete settings.

In the discrete setting, the standard solver of the regularized OT problem is the
Sinkhorn-Knopp algorithm which has a general computational complexity of O(n2).
The problem is notoriously hard to solve, and the complexity of the Sinkhorn-Knopp
algorithm is too high for a very large scale setting. Stochastic algorithms can be used
to cope with that limitation and compute solutions of the regularized OT problem
with a computational complexity of O(n).

In the semi-discrete setting, some solvers exist but can only be applied to specific
subproblems in low dimension and with simple cost functions. The stochastic gra-
dient algorithm can be used for finding the optimal solution of such problems in the
general form.

To explore the properties of stochastic optimization for OT, we will present three
experiments: a benchmark of stochastic algorithms on synthetic data and an image
retreival task that will provide some numerical results to illustrate the use of gradient
aggregation algorithms (namely SAG and SAGA) for solving dicrete optimal trans-
port problems, and a socio-economic data analysis that will provide insights into the
scope of stochastic gradient algorithms for solving semi-discrete OT problems.
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1 Introduction

Optimal Transport (OT) is well known for its many applications in various domains,
especially when working in spaces of probability distributions. It has recently had
major successes when applied to several machine learning problems in Computer
Vision [1, 18] or Natural Language Processing [12]. Although efficient ways of solving
OT problems exist and are widely used in practice, they are impractical for very
large scale settings, which creates the need for more efficient methods. Stochastic
optimization is also an essential tool at the basis of numerous successes of machine
learning and its immense developments. They allow to solve very large scale problem
with reasonable time and memory requirements, which make them ideal for cases
where traditional methods for solving OT problems fail.

1.1 Optimal transport : problem formulations

Optimal transport dates back to 1781, when Monge studied the mathematical prop-
erties of problems involving the displacement of earth [13]. The problem has been
first formulated in its modern form by Kantorovitch [11], allowing for continuous
displacement of mass. OT can be interpreted as a way of defining a metric among
probability distributions, called the Wasserstein of earth mover’s distance. It is
often described as a natural way to leverage the geometry of a space and define
a metric on probability distributions, by opposition to the Euclidean distance and
Kullback-Leibler divergence.

1.1.1 Entropic regularization of OT

We consider two measures µ ∈ M1
+(X ) and ν ∈ M1

+(Y) defined on metric spaces
X and Y. The cost of moving a unit of mass from x ∈ X and y ∈ Y is defined by
the continuous function c ∈ C(X ,Y), and written c(x, y). We also define the set of
joint probability measures on X × Y

Π(µ, ν) , {π ∈M+(X × Y);∀(A,B) ⊂ X × Y, π(A,Y) = µ(A), π(X , B) = ν(B)}

The entropic regularized version of the OT problem [4] can be written as a single
convex optimization problem in the following form: ∀(µ, ν) ∈M1

+(X )×M1
+(Y),

Wε(µ, ν) , min
π∈Π(µ,ν)

∫
X ,Y

c(x, y)dπ(x, y) + εKL(π||µ⊗ ν) (Pε)

With KL(π||µ⊗ ν) corresponding to the Kullback-Leibler divergence between mea-

sures π and µ⊗ ν, defined by KL(π||ξ) ,
∫
X ,Y

(
log(dπdξ (x, y)− 1

)
dξ(x, y).

For ε > 0, the above problem is strongly convex. (Pε) is usually called the primal
form of the regularized OT problem, by opposition to the dual and semi-dual form
that will be studied further.

Sinkhorn for discrete OT In the discrete setting µ =
∑n

i δxiµi and ν =
∑m

j δxjνj ,

the sums are finite and the cost is C ∈ Rn×m. The structure of the KL divergence
gives the optimal solution Pε ∈ Π(µ, ν) a convenient structure that makes it possible
solving the problem using Sinkhorn’s algorithm [4]. There indeed exist two scaling
variables uε ∈ Rn and vε ∈ Rm such that

Pε = diag(uε)Kεdiag(vε)
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Where (Kε)i,j = exp(−Ci,j/ε) [16]. Those scaling variables can be computed itera-
tively with the following update at step `,

u`+1
ε ,

µ

Kεv`ε
and v`+1

ε ,
ν

KT
ε u

`+1
ε

(1)

Because each step of the algorithm relies on a vector-matrix computation, the overall
complexity of the algorithm is O(nm) in the most general configuration. Moreover,
the rate of convergence of the algorithm is linear in the number of iterations [6].

Algorithm 1 Sinkhorn algorithm

1: Data: C, ε, µ, ν
2: K← exp(−C/ε)
3: u = v = 0
4: while !(stopping criterion) do
5: u← µ

Kv
6: v← ν

KTu
7: end while
8: return diag(u)Kdiag(v)

The algorithm can be used in a large scale setting by making use of specific
hardware (multiple Wasserstein distances can be computed in parallel on a GPU [22])
and in some other specific cases where the kernel K is separable or can be expressed
as a convolution [16]. In the general case however, the computational complexity of
Sinkhorn’s algorithm can be prohibitively large for large scale problems.

The solution of an OT problem in the discrete setting can be represented as a
transportation matrix Pε. An example of such a solution can be visualized along
with two randomly generated measures on 1, ..., 50 on Figure 1. The distance matrix
is the L2 distance on the set 1, ..., 50, the value of ε was set to 1e-4 and the problem
was solved with Sinkhorn’s algorithm.
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Figure 1: An example solution to discrete regularized OT for the blue
and red discrete measures.

Naturally, most of the transport is concentrated close to the diagonal of the matrix,
that is where the cost is smallest in the example.
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1.1.2 Dual and Semi-dual formulations

The dual and semi-dual variations of the OT problem are essential for constructing
and applying stochastic optimization methods to solve it.

We define the following set for c ∈ C(X × Y)

Uc , {(u, v) ∈ C(X )× C(X );∀(x, y) ∈ X × Y, u(x) + v(y) ≤ c(x, y)}

The dual problem can be derived using Fencher-Rockafellar’s theorem [8] and reads

Wε(µ, ν) = max
(u,v)∈C(X )×C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιεUc(u, v) (Dε)

Where we have defined ι0Uc = ιUc and for ε > 0, ιεUc is the smoothed approximation
of the indicator function of Uc,

ιεUc(u, v) = ε

∫
X×Y

exp

(
u(x) + v(y)− c(x, y)

ε

)
dµ(x)dν(y)

If we write the optimality conditions in v of (Dε), we get the following relation
between u and v

∀x ∈ X , u(x) = vc,ε(x) ,

miny∈Y c(x, y)− v(y) if ε = 0

−ε log

(∫
Y exp

(
v(y)− c(x, y)

ε

))
if ε > 0

vc,ε is sometimes called the c-transform [3] of dual variable v. By plugging this
expression back into (Dε), we get the semi-dual form of the OT problem

Wε(µ, ν) = max
v∈C(Y)

Hε(v) ,
∫
X
vc,ε(x)dµ(x) +

∫
Y
v(y)dν(y)− ε (Sε)

This formulation is crucial to solving the semi-discrete OT problem, because op-
timization can be done with respect to the discrete dual variable instead of the
continuous one.

Dual variables and Sinkhorn algorithm In the discrete setting, the scaling variables
u and v of the Sinkhorn algorithm can be linked to the dual variables u and v of
(Dε) with the relation

(u,v) = (exp(u/ε), exp(v/ε))

The proof of this result can be found in [16]. With these variables, the Sinkhorn
algorithm can be re-written as a block coordinate ascent strategy on the dual vari-
ables.

We also note that, since the scaling variables of the Sinkhorn algorithm are defined
up to a multiplicative constant λ > 0, the dual variables are also defined up to an
additive constant.

Furthermore, for a v solving (Sε), an optimal u can be recovered with u = vc,ε

(this also shows that u and v can be translated by an arbitrary constant in opposite
directions). From a pair (u, v) solving (Dε), an optimal solution π of (Pε) can be

computed with dπ(x, y) = exp
(
u(x)+v(y)−c(x,y)

ε

)
dµ(x)dν(y).
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1.2 Relevant Work

The unregularized Kantorovitch formulation [11] of optimal transport is usually
solved as a large scale linear program in the case of finite distributions (for example
a network simplex algorithm). Some heuristics were introduced to cope with the rel-
atively high computational cost of those method, such as pruning the long distances
between histogram bins [15] or using quad-trees and random shifts such as in [21].

Since the regularized version of the problem is strongly convex, it can benefit from
all the optimization methods associated with and advantages of this property. As
presented above, regularized optimal transport problems are usually tackled with
Sinkhorn’s algorithm [4]. Its linear convergence rate and paralellisation properties
(showcased in [23]) make it the prevalent way of computing solutions to the problem.

For semi-discrete OT, the main way to compute solution to the problem is by
using semi-discrete solvers such as [2].

The implementations and stochastic formulations of discrete and semi-discrete
optimal transport problems are based on Genevay et al.’s paper on stochastic opti-
mization applied to optimal transport [8]. This paper also explores the continuous-
continuous setting, which has comparatively to the other two been less explored in
practice because it involves estimating functions, which is a harder task in general.
[8] uses a Kernel expansion of the dual variables to solve the continuous-continuous
problem, while [1] and [20] have used neural networks to represent the dual variables.

1.3 Contributions

This contributions of this paper are the following:

• Lay out the stochastic formulations of discrete and semi-discrete OT problems
proposed in [8].

• Implement and benchmark the SAG (Stochastic Average Gradient) algorithm
[19] in the discrete setting on synthetic and real data, give some supplementary
results to [8].

• Implement and benchmark the SAGA algorithm [5] in the same setting and
compare its performances with SAG.

• Implement and benchmark the SGD algorithm for semi-discrete optimal trans-
port on a socio-economic case study.

We show that stochastic optimization is a very useful tool for dealing with OT
problems, as it provides a possibly more efficient way to compute solutions in a
discrete setting and a general way of solving semi-discrete OT problems.
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2 A numerical study of stochastic optimization for large
scale optimal transport

As presented in the last section, Sinkhorn’s algorithm has an relatively high com-
putational complexity that can prohibit its utilization in a very large scale setting.
With their linear complexity in general, stochastic optimization algorithms offer an
attractive alternative to Sinkhorn, provided the problem can be framed as optimiza-
tion of an empirical or expected risk. In this section, we will quickly present this
formulation, and then study and benchmark the algorithms presented for discrete
and semi-discrete optimal transport. All the code used for generating the results of
this section is available online1.

2.1 Stochastic optimization for OT

2.1.1 Stochastic formulation

To make it possible using stochastic optimization methods for the OT problems, we
frame the dual (Dε) and semi-dual (Sε) optimization problems as maximization of
expectations,

Wε(µ, ν) = max
(u,v)

EX,Y [fε(X,Y, u, v)] (EDε)

= max
v

EX [hε(X, v)] (ESε)

Where the two independent random variables X and Y are defined on X , Y, follow
respectively the distributions µ and ν, and with the following definitions for fε and
hε,

∀ε > 0, fε(x, y, u, v) = u(x) + v(y)− ε exp

(
u(x) + v(y)− c(x, y)

ε

)
∀ε ≥ 0, hε(x, v) =

∫
Y
v(y)dν(y) + vc,ε(y)− ε

2.1.2 Stochastic optimization algorithms

Three algorithms will be studied for solving the stochastic OT problems. The first
is the standard Stochastic Gradient algorithm (SG). It is based on sampling a real-
ization of the random variable in the expected risk (X on our case) and use it as an
estimate of the gradient direction for the update of the iterate.

In the case of problem (ESε), Algorithm 2 shows the details of each step. The
+ symbol on line 6 corresponds to a gradient ascent since the objective has to be
maximized.

The two other algorithms studied in the report, Stochastic Averaged Gradient
(SAG) [19] and SAGA [5] belong to the family of gradient aggregation algorithms.
These were designed for finite sum objectives (empirical risks), which is only appli-
cable in our case to the discrete optimization problem as we will see further.

The two methods are based on the idea that keeping a history of past gradient
in a stochastic context could give better estimate of the real gradient and thus
ensure faster convergence. This intuition is verified, because both SAG and SAGA
guarantee a O(1/k) convergence rate in the general case and a linear convergence
rate in the strongly convex case [19, 5](against O(1/

√
k) and O(1/k) respectively for

1On GitHub, at the URL https://github.com/hugcis/large-scale-optimal-transport
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Algorithm 2 SG algorithm

1: Choose initial iterate v0

2: for k = 0, ...,K do
3: Generate a realization xk of X
4: Compute the stochastic vector ∇hε(xk, vk)
5: Choose step size αk
6: vk+1 ← vk + αk∇hε(xk, vk)
7: end for

standard SG for a suitable decreasing step size sequence and standard assumptions
[14]), with automatic adaptation to the local strong-convexity of the objective.

Those properties make them very attractive for applications where SG shows its
limitation, and [8] has presented the advantages of using SAG for discrete optimal
transport. One major drawbacks of the gradient aggregation algorithms is the fact
that all gradients have to be stored at each step of the algorithm, which can be a
strong limitation when working with very large scale problems.

2.2 Discrete Optimal Transport

In the case of discrete OT, we recall that µ and ν can both be written as finite sums
of Diracs, i.e µ =

∑I
i=1 µiδxi and ν =

∑J
j=1 νjδyj with ∀i, xi ∈ X ; ∀j, xj ∈ Y and

µ ∈ ΣI , ν ∈ ΣJ .

2.2.1 Details of formulation

We re-write the primal, dual and semi-dual problems with discrete measures for
ε > 0:

Wε(µ, ν) = min
π∈Uµ,ν

I,J∑
i,j=1

Ci,jπi,j + ε
∑
i,j

(
log

πi,j
µiνj

− 1

)
πi,j (Pε)

= max
(u,v)∈RI×RJ

I∑
i=1

uiµi +

J∑
j=1

vjνj − ε
∑
i,j

exp

(
ui + vj −Ci,j

ε

)
µiνj

(Dε)

= max
v∈RJ

Hε(v) =

I∑
i=1

hε(xi,v)µi (Sε)

Where we have defined

hε(x,v) =

J∑
j=1

vjνj +

{
−ε log

(∑J
j=1 exp

(
vj−c(x,yj)

ε

)
νj

)
− ε if ε > 0,

minj(c(x, yj)− vj) if ε = 0

Equation (Sε) can be interpreted as an empirical risk associated with the func-
tions (hε(xi, ·)). We can therefore apply stochastic optimization algorithms on the
problem (Sε). The gradient to be computed is

∇vhε(x,v)j = νj − exp

(
vj − c(x, yj)

ε

)( J∑
i=1

exp

(
vi − c(x, yi)

ε

))−1
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2.2.2 Stochastic algorithms and discrete OT

As explained in Section 2.1.2, SAG and SAGA have comparatively better conver-
gence guarantees than SG for minimizing or maximizing strongly convex and non-
strongly convex objectives.

Algorithms 3 and 4 show the pseudo-code implementation of both algorithms
in the case of discrete OT. The parameter step designates a learning rate that is
usually chosen in accordance with the Lipschitz constant of the function Hε to be
maximized, L = maxi µi/ε.

Algorithm 3 SAG algorithm for discrete OT

1: Choose initial iterate v1

2: avg← 0J ,gradi ← 0J
3: (Note: Gradient can be initialized with a pass of SG)
4: for k = 1, ...,K do
5: Sample uniformly i ∈ {1, ..., I}
6: avg← avg − 1

Igradi
7: gradi ← µi∇vhε(x,vk)
8: avg← avg + 1

Igradi
9: vk+1 ← vk + step ∗ avg

10: end for

Algorithm 4 SAGA algorithm for discrete OT

1: Choose initial iterate v1

2: avg← 0J ,gradi ← 0J , last grad← 0J
3: (Note: Gradient can be initialized with a pass of SG)
4: for k = 1, ...,K do
5: Sample uniformly i ∈ {1, ..., I}
6: last grad← gradi
7: avg← avg − 1

I last grad
8: gradi ← µi∇vhε(x,vk)
9: avg← avg + 1

Igradi
10: vk+1 ← vk + step ∗ (gradi − last grad + avg)
11: end for

We first evaluate those algorithms on the toy problem of computing the solution to
(Pε) for two random discrete measures with support {1, ..., N}. They are obtained
by sampling N values from a uniform distribution on [0, 1] twice and normalizing
the histograms in order to obtain measures.

Observed convergence is linear after a certain number of passes over the data in
those examples, which confirm the theoretical guarantees of the SAG and SAGA
algorithm.

As recommended in [19], the three learning rates 1/L, 3/L and 5/L are tested
for the SAG algorithm. Depending on the chosen learning rate, improvement over
Sinkhorn’s algorithm can be obtained or not, which is a crucial information when
trying to apply the algorithms on very large scale settings. Notably here, both 3/L
and 5/L show very significant improvements over Sinkhorn.

For the SAGA algorithm, the theoretical convergence guarantee is proven for a
learning rate of 1/3L. We try this learning rate along with some others such as

9
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Figure 2: Convergence of SAG on two randomly generated histograms
of size 500. 50 independent runs were averaged.
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Figure 3: Convergence of SAGA algorithm for different learning rates
on two randomly generated histograms of size 500. 50 inde-
pendent runs were averaged.

1/5L, 1/L, 3/L and 5/L. We note that, although no convergence guarantees exist
for these values, SAGA algorithm has a behavior very similar to the SAG algorithm
for the same pairs of learning rate (1/nL). This implies that SAGA doesn’t show
any significant advantage or disadvantage over SAG for this particular example.

The optimal values all convergence rate are compared against were obtained by
running Sinkhorn’s algorithm up to convergence of the solution to machine precision.

We now study the properties of stochastic optimization on a real world dataset,
for the task of image retrieval described in [18]. For this, we work with the INRIA
Holiday dataset [10]2. The pictures are preprocessed and converted from RGB to
the CIE-Lab color space [24], which was in turn uniformly quantized into 323 bins
in a 3D histogram. Since much of those bins are empty (the range of color of a
dataset of natural images is limited and RGB doesn’t capture all the color space
available from the CIE-Lab color space), we prune the empty bins in the histograms
and represent all images with histograms of size 4128. We note that by opposition
to the last experiment, representation of the images in this form are typically very
sparse. The cost function is the L2 norm over the CIE-Lab color space.

With this representation, we compute 10 pairwise distances between images from

2The dataset is available for download at http://lear.inrialpes.fr/~jegou/data.php#holidays.
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the dataset selected at random and show the convergence results for SAG, SAGA
and Sinkhorn. ε was set to 0.01. We compare the results to an optimal dual variable
v∗ which corresponds to the best obtained dual variable across all methods.

0 500 1000 1500 2000 2500
Passes over data

10 1

100

||
H

(v
)||

1

SAG 1/L
SAG 3/L
SAG 5/L

(a) Evolution of ||∇H(v)||1.

0 500 1000 1500 2000 2500
Passes over data

10 3

10 2

||v
v

* |
| 2/

I

SAGA 1/L
SAGA 3/L
SAGA 5/L
Sinkhorn

(b) Convergence of SAG algorithm for different
learning rates.

Figure 4: Convergence of SAG on 10 pairs of images. Dashed lines and
filled areas represent deviation from the mean (solid line).
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Figure 5: Convergence of SAGA on 10 pairs of images. Dashed lines
and filled areas represent deviation from the mean (solid
line).

In this example, Sinkhorn was consistently faster than the other optimization
methods which had a convergence rate close to O

(
1
k

)
. For SAG and SAGA, the

overall best performing learning rate was 5/L in terms of speed of convergence. It
however gave some poor results for SAGA in some cases where the gradient did not
converge to 0.

2.3 Semi-discrete Optimal Transport

In semi-discrete optimal transport, µ can be an arbitrary measure and the other
measure ν =

∑J
j=1 νjδyj is discrete [16]. We therefore need to work with the expec-

tation form of the dual and semi dual problem presented in 2.1.1. We recall here
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the semi-dual form of the problem (ESε):

Wε(µ, ν) = max
v

EX [hε(X, v)]

X follows the law of µ in that case, and hε has been defined above. The gradient
aggregation algorithms such as SAG and SAGA cannot be applied as is to such
problem, but the SG algorithms still fits to its constraints, since it only needs a
random variable to sample from.

A way to fall back to a setting were the gradient aggregation family of algorithms is
applicable is to discretize the continuous measure and approximate it with a discrete
one. This method has the drawback of making the obtained solution inexact due to
discretization noise, and is therefore not studied in this report.

2.3.1 Stochastic gradient algorithm for semi-discrete OT

The SG algorithm applied to the semi-discrete setting is detailed in algorithm 5. The
convergence rate is guaranteed to be O(1/

√
k) by using averaging of the iterates v

[17] (line 5 in algorithm 5) since the problem is not strongly convex.

Algorithm 5 SG algorithm for semi-discrete OT

1: ṽ ← 0J ,v ← ṽ
2: for k = 1, ...,K do
3: Sample xk realization of X following µ
4: ṽ ← + step√

k
∇vhε(xk, ṽ)

5: v ← 1
k ṽ + k−1

k v
6: end for

2.3.2 Case study of semi-discrete OT for analysis of socio-economic data

Problem formulation We now study the properties of SGD algorithm applied to
a semi-discrete OT problem based on real-world data. This experiment is inspired
from Hartmann and Schuhmacher ’s description of the delivery resource allocation
problem [9] and Galichon’s book on optimal transport for economics [7].

We will study here a problem of resource allocation based on open datasets avail-
able from the official French open dataset repository data.gouv.fr. Similarly to the
delivery resource allocation problem studied in [9], we consider a limited resource
spatially scattered and a demand density across a territory. More specifically, we
consider here a set of J middle schools as the ressource (that is indeed spatially
distributed), that we can assimilate to a discrete measure over a territory. That
measure is supported by Y = {1, .., J}.

To model demand, we use the population density µ (in the sense of number of
people divided by the occupied area), with the assumption that demand for school
is roughly proportional to the population density of the area. The support of this
continuous measure is a delimited territory. To model the transportation cost of
people going to a school, we use the square distance on the territory, or L2 norm. For
any inhabitant x the cost to go to a school located at y is therefore Φ(x, y) = |x−y|2.
The support of µ is written X .

Supply capacity for each school is represented by the the total number of students
at the school. The total school supply sums to one which equates the total demand.

A rudimentary way of solving this ressource allocation problem would be to only
take into account the supply and demand without modelling any form of side-effect
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of high demand (such as high price, or in our case, the high entry level of the
school). Everybody would then choose the school such as to maximize a utility
function u(x) = maxj∈{1,...,J}−Φ(x, y). The set of people preferring school j over
other schools is

X 0
j , {x ∈ X | Φ(x, yj) ≤ Φ(x, yk), ∀k}

This corresponds to a Voronoi tessellation of the territory with the schools being
the centers of the Voronoi cells. Demand for school j is P(x ∈ Xj) =

∫
Xj dµ(x).

Now, if we consider that school have an entry level p = (pj)j∈{1,...,M} that changes
with demand, and we assume that utility is written3

u(x) = max
j∈{1,...,J}

−pj − Φ(x, yj)

We write qj the demand for school j. At market equilibrium, demand for a school
equates the supply it provides and all schools are at complete capacity, hence P(x ∈
Xj) = qj , with

∑
j qj = 1.

A transportation problem A planner seeks to find an optimal assignment π that
minimizes the total transportation cost, while matching the population density with
the corresponding schools. She would have

min
π∈Π(µ,q)

∫
X ,Y

c(x, y)dπ(x, y)

This is the exact formulation of a semi-discrete transport problem with continuous
measure µ and discrete measure q =

∑
j δyjqj .

We now write the semi-dual form of the entropic regularization of the problem

Wε(µ, q) = max
v∈RJ

EX [hε(X,v)]

We recall the expression of hε and give some details about it in the setting of the
case study.

hε(x,v) =

J∑
j=1

vjνj +

{
−ε log

(∑J
j=1 exp

(
vj−c(x,yj)

ε

)
νj

)
− ε if ε > 0,

minj(c(x, yj)− vj) if ε = 0

Note also that the solution to the optimization problem is a smooth version of
the Laguerre cells Lv(yj) , {x ∈ X | c(x, yj)− vj ≤ c(x, yk)− vk,∀k}. It seems now
that the semi-dual problem can be interpreted in terms of choosing a entry level p
for all schools, by identifying p with −v. hε then becomes

hε(x,p) = −
J∑
j=1

pjqj +

{
−ε log

(∑J
j=1 exp

(
−pj−c(x,yj)

ε

)
qj

)
− ε if ε > 0,

minj(c(x, yj) + pj) if ε = 0

The problem therefore amounts to finding the price that maximizes the expected
utility u(x) = minj∈{1,...,J} pj + Φ(x, yj) (and smoothed utility) of everyone while
minimizing the global output of all schools (demand times the level of each school).

Possible applications of this kind of model range from defining the spatial assign-
ment of public schools to identifying the weak points in the geographical repartition
of schools and managing the attractiveness of all schools.

3This modelling could obviously be discussed, since the assumption that people will preferably choose a school
with low entry level and closer to them is debatable. The assumption is made here to show a possible way of
posing the problem in terms of optimal transport.
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Numerical experiments We implement the SG algorithm to solve the semi-discrete
OT problem for the two measures represented on Figure 9. We use the squared
distance as our cost function. This is based on the assumption that straight line
distance is a good proxy for the travel distance, which might not be very accurate
when there is a body of water between two points for example. A better distance
function would use isochrone curves, but we assume that the straight line distance
is a good enough approximation for this example.

(a) School locations (b) Population log-density by “cantons”

Figure 6: Example initial setting of the problem described in paragraph
2.3.2 for the French administrative region “Pays de la Loire”

Setting the vector v to 0 would yield an assignment that coincides with the
smoothed Voronoi tessellation of the territory. The smoothed c-transform of v rep-
resents the expected utility at position x. The optimal function, computed after 108

iterations of SG, is represented on Figure 7a. The Laguerre cells corresponding to
the computed dual potential v are displayed on Figure 7b.

Figure 8a shows the convergence plot for several values of ε of the SG algorithm on
the example displayed Figure 9. Figure 8b shows a moving average of the gradients
during processing, lighter lines represent the real values. Convergence is observed to
be much slower than for the discrete setting with gradient aggregation algorithms,
which is in accordance with theory.

The iterates were compared against an optimal v∗0 obtained by running SG on the
unregularized problem for 5× 108 iterations (5 times more than plotted). Note that
for ε 6= 0, the iterates are not expected to converge to the unregularized solution
and will rather converge to some other value.
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(a) Smoothed c-transform of an optimal v, vc,ε for
ε = 0.01.

(b) Laguerre cells for the computed value of v, cor-
responding to the assigned schools that mini-
mizes the overall transportation cost with ε =
0.01.

Figure 7: Results for the problem illustrated on Figure 9

103 104 105 106 107

Iterations

10 2

10 1

||v
v 0

||

= 0.01
= 0.05
= 0.1
= 0

(a) Convergence towards unregularized solution.

102 103 104 105 106 107

Iterations

10 1

||
H

(v
)||

1

= 0.01
= 0.05
= 0.1

(b) Evolution of gradient of objective function.

Figure 8: Convergence of SG in the semi-discrete setting for different
values of ε
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(a) Smoothed c-transform of an op-
timal v, vc,ε for ε = 0.01.

(b) Laguerre cells.

103 104 105 106 107

Iterations

10 2

10 1

||v
v 0

||

= 0.1
= 0.01
= 0

(c) Convergence plot for several values of ε.

Figure 9: Another example of convergence for the French administra-
tive region “Bretagne”.
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3 Conclusion and Perspectives

Stochastic optimization is a very promising tool for optimal transport and its appli-
cation to very large scale settings.

We have presented a numerical analysis of SAG and SAGA for solving discrete
OT problems on synthetic and real data for image retrieval. It has shown that
these methods can sometimes outperform Sinkhorn’s algorithm, but with a strong
dependency on the parameters of the problems. We have also studied the stochastic
gradient algorithm for semi-discrete optimal transport and presented a potential
application of this method.

Both [8] and experiments in this paper show that in the discrete setting, stochastic
algorithms can sometimes outperform Sinkhorn’s algorithm and therefore become an
essential way of solving optimal transport problems. However, although [8]’s word
vectors example showed very consistent and significant improvement over Sinkhorn,
it was not always observed in our experiments and seems to depend heavily on the
choice of step size for the SAG and SAGA algorithms that were used to achieve
this result. A more thorough exploration of the convergence properties on several
other problems could be needed to have a better understanding of the influence of
the size of the problem, structure of the input and output measures and algorithm’s
parameters.

In the semi-discrete setting, the stochastic gradient algorithm provides a general
solver that can be applied to any type of cost function and is also scalable. We have
presented the convergence properties of this algorithm on a real-world dataset that
highlights some possible applications of semi-discrete optimal transport.

To achieve an in-depth evaluation of the stochastic methods for optimal transport,
one would need to work in very large scale setups, where the O(n2) computational
complexity prevents from using Sinkhorn’s algorithm at all. This would allow to re-
ally evaluate how practical stochastic optimization algorithms for optimal transport
are.
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Royale, 1781.

[14] A. Nemirovski et al. “Robust Stochastic Approximation Approach to Stochas-
tic Programming”. In: SIAM Journal on Optimization 19.4 (Jan. 2009), pp. 1574–
1609. issn: 1052-6234, 1095-7189. doi: 10.1137/070704277.

18

http://arxiv.org/abs/1701.07875
http://dx.doi.org/10.1007/PL00009187
http://dx.doi.org/10.1137/15M1032600
https://doi.org/10.1137/15M1032600
https://doi.org/10.1137/15M1032600
http://arxiv.org/abs/1407.0202
http://dx.doi.org/10.1016/0024-3795(89)90490-4
http://arxiv.org/abs/1706.07650
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://dx.doi.org/10.1137/070704277


[15] O. Pele and M. Werman. “Fast and robust Earth Mover’s Distances”. In: 2009
IEEE 12th International Conference on Computer Vision. 2009 IEEE 12th
International Conference on Computer Vision. Sept. 2009, pp. 460–467. doi:
10.1109/ICCV.2009.5459199.

[16] Gabriel Peyré and Marco Cuturi. “Computational Optimal Transport”. In:
arXiv:1803.00567 [stat] (Mar. 1, 2018). arXiv: 1803.00567.

[17] B. T. Polyak and A. B. Juditsky. “Acceleration of Stochastic Approximation
by Averaging”. In: SIAM Journal on Control and Optimization 30.4 (July
1992), pp. 838–855. issn: 0363-0129, 1095-7138. doi: 10.1137/0330046.

[18] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s
Distance As a Metric for Image Retrieval”. In: Int. J. Comput. Vision 40.2
(Nov. 2000), pp. 99–121. issn: 0920-5691. doi: 10.1023/A:1026543900054.

[19] Mark Schmidt, Nicolas Le Roux, and Francis Bach. “Minimizing Finite Sums
with the Stochastic Average Gradient”. In: arXiv:1309.2388 [cs, math, stat]
(Sept. 10, 2013). arXiv: 1309.2388.

[20] Vivien Seguy et al. “Large-Scale Optimal Transport and Mapping Estima-
tion”. In: arXiv:1711.02283 [stat] (Nov. 6, 2017). arXiv: 1711.02283.

[21] R. Sharathkumar and Pankaj K. Agarwal. “A near-linear time ε-approximation
algorithm for geometric bipartite matching”. In: Proceedings of the 44th sym-
posium on Theory of Computing - STOC ’12. the 44th symposium. New York,
New York, USA: ACM Press, 2012, p. 385. isbn: 978-1-4503-1245-5. doi: 10.
1145/2213977.2214014.

[22] Marcos Slomp et al. “GPU-based SoftAssign for maximizing image utilization
in photomosaics”. In: International Journal of Networking and Computing 1.2
(2011), pp. 211–229.

[23] Justin Solomon et al. “Convolutional wasserstein distances: efficient optimal
transportation on geometric domains”. In: ACM Transactions on Graphics
34.4 (July 27, 2015), 66:1–66. issn: 07300301. doi: 10.1145/2766963.

[24] Günter Wyszecki and W. S. Stiles. Color science: concepts and methods, quan-
titative data, and formulae. Wiley classics library ed. Wiley classics library.
New York: John Wiley & Sons, 2000. 950 pp. isbn: 978-0-471-39918-6.

19

http://dx.doi.org/10.1109/ICCV.2009.5459199
http://arxiv.org/abs/1803.00567
http://dx.doi.org/10.1137/0330046
http://dx.doi.org/10.1023/A:1026543900054
http://arxiv.org/abs/1309.2388
http://arxiv.org/abs/1711.02283
http://dx.doi.org/10.1145/2213977.2214014
http://dx.doi.org/10.1145/2213977.2214014
http://dx.doi.org/10.1145/2766963

	Introduction
	Optimal transport : problem formulations
	Entropic regularization of OT
	Dual and Semi-dual formulations

	Relevant Work
	Contributions

	A numerical study of stochastic optimization for large scale optimal transport
	Stochastic optimization for OT
	Stochastic formulation
	Stochastic optimization algorithms

	Discrete Optimal Transport
	Details of formulation
	Stochastic algorithms and discrete OT

	Semi-discrete Optimal Transport
	Stochastic gradient algorithm for semi-discrete OT
	Case study of semi-discrete OT for analysis of socio-economic data


	Conclusion and Perspectives

