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Abstract

Recent approaches using neural networks capable of operating on graph-structured
data have had successes on several tasks involving graph manipulations. We
consider the Influence Maximization (IM) problem in the Independent Cascade
model (IC). The offline version of the problem, where one seeks a maximal seed set
of nodes maximizing influence with knowledge of transition probabilities between
nodes has been well explored. This paper studies possible applications of graph
networks to solving IC-IM in order to approximate and compare the performance
with existing heuristics for solving IM problems. For this purpose, we train a graph
network with both PMIA and the weighted degree heuristic and analyze the results.

1 Introduction

1.1 Influence maximization

When dealing with social networks such as Facebook and Twitter, an essential topic is the propagation
of ideas and influence. This question is studied by marketers trying to maximize the visibility of
products or campaign managers wanting to persuade voters. Specifically, given a budget of influencers
(or seeds) and a network of people capable of influencing each other, one wants to choose targets (or
nodes in a graph) that yields the best influence spread or expected number of people affected by the
campaign.

Kempe, Kleinberg, and Tardos (2003) were among the first to devise the modern formulation of the
Influence Maximization problem as the task of finding a small set of seed nodes in a social network
that maximizes the spread of influence under some influence models they propose. Here we focus
specifically on the Independent Cascade model, originally proposed by Goldenberg, Libai, and Muller
(2001), which consists in a discrete process where an initial set of active nodes are given a single
chance to activate their currently inactive neighbors through independent sampling of a Bernoulli
variable. The process is repeated until no more activation is possible in the graph.

The offline IM problem assumes that influence probabilities between each node of the graph are
known from the beginning and the task is to find the maximal set of seed nodes. This problem was
proven to be #P-hard but its solution can be efficiently approximated with approximate algorithms
(Chen, C. Wang, and Y. Wang, 2010).

1.2 Graph networks

Learning from graph-structured data is a difficult problem that has seen a surge in interest in the
past years. It has been studied extensively for representation learning of graphs (Hamilton, Ying,
and Leskovec, 2017; Xu et al., 2018), with application to semi-supervised classification (Kipf and
Welling, 2016) or predicting the temporal evolution of a complex system (P. Battaglia et al., 2016).

Graph networks are designed to process relational data while being invariant to the structure, number
of nodes and edges of the graph. Thus, they enable working with much more complex systems than
traditional neural networks.



2 Related work

In this section, we first provide some details about the KK-Greedy algorithm. Secondly we present
the recent works done to improve the efficiency of KK-Greedy. Finally, we give a more detailed
presentation of graph networks, some of their successes and Deep mind’s graph net framework that
we will be working with.

2.1 KK-Greedy

A greedy algorithm follows the problem solving heuristic of making the locally optimal choice at
each stage with the intent of finding a global optimum.

KK-Greedy algorithm uses the properties of sub-modular and monotone functions defined as follow
Definition 1. If Ω is a finite set, a sub-modular function is a set function f : 2Ω → R, which satisfies
the following condition :
For every S, T ⊆ Ω we have that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Algorithm 1 Greedy(k, f )

1: initialize S = ∅
2: for i = 1 to k do
3: select u = arg maxw∈V−S(f(S ∪ {w})− f(S))
4: S = S ∪ {U}
5: end for
6: output S

Algorithm 1 shows the pseudo-code implementation of a greedy algorithm for influence maximization.

For any sub-modular and monotone function f with f(∅) = 0, the algorithm iteratively selects new
seed u that maximizes the incremental change of f into the seed set S until k seeds are selected. The
influence spread of S, which is the expected number of activated nodes given seed set S, is denoted as
σI(S). Kempe, Kleinberg, and Tardos (2003) proved that influence maximization on the IC model is
monotone and sub-modular, and therefore the approximate Greedy algorithm produces near-optimal
solutions and solves the influence maximization problem with an approximation ratio of 1− 1/e.

2.2 More recent work

The main issue with the KK-Greedy, is that there is no efficient way to compute σI(S) given a set
S. Chen, C. Wang, and Y. Wang (2010) point out that the computation is of the influence spread is
#P-hard. They propose a heuristic scheme to use local arborescence structures spanning from each
node to approximate the influence propagation (MIA) and show that the influence spread in the MIA
model is sub-modular. Therefore, a simple greedy algorithm can guarantee an influence spread within
(1 - 1

e ) of the optimal solution in the MIA model.
Let P = (u = p1, ..., pm = v) be a path from node u to node v. We denote pp(P ) the propagation
probability of the whole path.

pp(P ) =

m−1∏
i=1

pp(pi, pi+1).

where pp(pi, pi+1) is the propagation probability from node pi to node pi+1.

The authors use the maximum influence path, which corresponds to the path from u to v with
maximum propagation probability, and is denoted MIPG(u, v). The definition can be written

MIPG(u, v) = arg max{pp(P )|P ∈ P(G, u, v)})
Where P(G, u, v) is the set of all paths from u to v.

If we transform the propagation probability pp(u, v) to −log(pp(u, v)), the MIP is the shortest path
from u to v which can be computed efficiently with algorithms such as Dijkstra’s algorithm.
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Now, for a given node v, we want to estimate the influence to v from other nodes and the influence
from v to other nodes. These two quantities are symmetric :

MIIA(v, θ) =
⋃
v∈V

pp(MIPG(u,v))≥0

MIPG(u, v)

MIOA(v, θ) =
⋃
u∈V

pp(MIPG(v,u))≥0

MIPG(v, u)

They denote the activation probability for any node u in MIIA(v, u) as ap(u, S,MIIA(v, u))
which is the probability that u is activated when the seed set is S and influence is propagated in
MIIA(v, θ). The authors propose an algorithm to compute recursively this quantity. Finally they
denote σM (S) the influence spread of S in the MIA model:

σM (S) =
∑
v∈V

ap(v, S,MIIA(v, θ))

With this method, they point out that computing σM (S) is polynomial-time. Together with Algorithm
1, they already have a polynomial-time approximation algorithm.To achieve a better approximation
to the IC model, they propose a MIA model in which the influence of a seed is not blocked by other
seeds. Let S = (s1, .., sm) where si are seeds and Si = S (si). The maximum influence path is
then computed in G(Si) the sub-graph of G induced by V : Si. This extension is called the prefix
excluding MIA (PMIA) model which is the algorithm we will use to train our graph network.

2.3 Graph networks

The motivation behind graph networks is that the standard deep learning toolkit does not offer
component on arbitrary relational structure. Whereas this information can increase performance
if the task has considerable relational structure. For instance, models in the graph neural network
family showed great success in different domains such as visual scene understanding, learning
dynamics of physical systems and predicting chemical properties of molecules. (P. W. Battaglia et al.,
2018) recently presented their graph networks (GN) framework, that aims at unifying the different
architecture of graph neural networks under a same paradigm. The main unit of computation in the
GN framework is the GN block, a module that takes a graph as input, performs computations over
the structure, and returns a graph as output. Entities are represented by the graph’s nodes, relations
by the edges, and system-level properties by global attributes. This graph-to-graph input/output
interface ensures that the output of one GN block can be passed as input to another, which allows the
construction of complex architectures by composing GN blocks. The authors present the encode-
process-decode architecture which takes an input graph, transforms it into a latent representation
using an encoder (also a GN block) and applies multiple times a shared core block for processing
and finally output a graph using a decoder block. The advantage of this framework is that it is very
flexible and can easily be adapted to our problem, while taking advantage of the powerful properties
of graph networks.

3 Graph networks for Influence Maximization

We define in this section the formal statement of the IM problem under the IC model. Given a directed
graph G = (V,E) with NV = |V | the number of nodes and NE = |E| the number of edges, the
transition probabilities can be described as a probability weight function w : E → [0, 1] representing
for an edge (v1, v2), the activation probability of v2 knowing that v1 was activated.

Given a integer K < NV , one needs to choose a set S ⊂ V of cardinality K, these nodes will
be activated, and will propagate influence according to the IC model. A realization of the IC
model diffusion process is obtained by independently sampling from Bernoulli random variables
w(e) ∼ BERNOULLI(w(e)) for each edge e ∈ E.

We say, following notations from Wen et al. (2016), that a node v2 is reachable from v1 if and only
if there exists a directed path p = (e1, ..., ek) such that ∀ 1 ≤ i ≤ k,w(ei) = 1. The node v2 is
influenced if v1 is contained in the seed set S and v2 is reachable from v1. The total number of
influenced nodes for a given realization is f(S,w).
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The objective of IM is to maximize the expected number of influenced nodes, that is finding S∗ =
arg maxS;|S|=K E[f(S,w)].

We will use one of the algorithms proposed by Chen, C. Wang, and Y. Wang (2010) that is able to
approximate the set S∗ to train a graph network to predict a set of maximum influence nodes in a
graph.

Graph networks take graphs as input and return graphs as outputs. The input graph has edge-(E),
node-(V), and global-level (u) attributes, and the output graph has the same structure, but updated
attributes (P. W. Battaglia et al., 2018). In this context, we set the edge attributes to the transition
probabilities w(e) of the graph. Since we expect the architecture to be better at approximating
additive relations rather than multiplicative ones, and because influence propagates in a multiplicative
way with respect to the transition probabilities, we also add the negative log-transition probability
(− logw(e)) as an attribute of the edges. This is based on the observation that the propagation
probability between two nodes is the shortest path if the edges have negative log-transition probability
as weights. We also use the node attributes as an indicator of whether the node belongs to the set of
maximum influence nodes in a target example.

4 Experiments

We took inspiration from the demonstration of shortest-path in the graph net repository1 to adapt
it to the IM problem. Since the task is taking place in an offline setting, the edge attributes are not
updated during the processing of the graph. The graph network is trained with a set of training
examples generated as binomial graphs with random number of nodes and random probability of
having an edge between any two nodes uniformly sampled between 0.5 and 0.6. The ground truth
maximum influence set of nodes is then generated using an oracle that we fisrt choose to be PMIA.
This algorithm is know to be sub-optimal, but has better results in terms of expected influence spread
than a simple greedy algorithm Chen, C. Wang, and Y. Wang, 2010 in general and is much faster.

A trade-off between efficiency of the oracle algorithm and speed was necessary since training a graph
network has to be done in a lot of iterations, which wouldn’t be practically possible with a slow target
creation process.

To encourage the network to output K nodes ∈ S, we add to a standard cross entropy term for the
nodes labels the following additional loss term

Lcard = ||card({p > 0.5 | p ∈ f(G)})−K||22
Where f(G) is the output of the graph network for an input graph G, that is a set of probabilities of
being in the set S (one for each node) and K is the target number of seed nodes.

We have empirically observed that this loss term helped the network output exactly the number of
nodes with high probability as necessary. This was proven especially useful for experiments where
we tried predicting sets with more than 3 nodes.

The graph network architecture we chose is similar to the shortest-path demo, with an Encoder-
Processor-Decoder structure. The nodes, edges and global attributes are encoded by separate trainable
multi-layer perceptrons (MLP). The encoded representation is further processed a fixed number of
times by a graph network, where node information is aggregated from in and out-edges. The loss
is computed at each step of the message passing process (not only the last) in order to encourage
the network to solve the problem in as few steps as possible and not rely on the fixed number of
steps to compute a solution. A message passing architecture seems well adapted to a influence
spread problem, and we expect the network to learn to estimate influence by spreading information in
the graph. It however degraded the performance greatly to aggregate node information from in or
out-edges only. We ran the experiments on randomly generated binomial graphs with a set range of
number of nodes and random probability between 0.5 and 0.6 of having an edge between any two
nodes. Edge transition probabilities are also randomly sampled from a uniform distribution U(0, 0.1)
that we treat as the ground truth probabilities. This range of probabilities is used by Wen et al. (2016)
and is guided by empirical evidence (Goyal, Bonchi, and Lakshmanan, 2010; Barbieri, Bonchi, and
Manco, 2013).

1https://github.com/deepmind/graph_nets/blob/master/graph_nets/demos/shortest_
path.ipynb
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We first tried to solve the relatively simple task of finding the node with highest influence in the
graph. The sub-optimality of PMIA is relatively low in that setting, especially for small values of the
parameter θ, and the target graphs it generates are accurate. Figure 1a shows the train and test loss,
accuracy and proportion of solved examples for this experiment. We can see that the network quickly
learns to output results that closely match the output of PMIA.
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(a) 1 seed, 10 message passing steps and between 10 and 25 nodes per graph and PMIA
heuristic.
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(b) 1 seed, 10 message passing steps and between 10 and 25 nodes per graph with weighted
degree heuristic.

Figure 1: Loss, number of correctly predicted node and proportion of solved examples.

As shown on the Figure, the task of finding 1 seed node is relatively easy to achieve, and a graph
network is able to predict accurately the maximum influence node. Figure 2a shows a graph from the
testing set with output probabilities at several steps of the message-passing process. All nodes outputs
are initialized at 0 and the network refines its prediction of the maximum influence node at each step.

(a) 1 seed

(b) 2 seeds

Figure 2: Sample graphs from the test set, along with the output from the graph network at several
steps for the results of Figures 1a and 3a

Naturally, as the number of seed nodes to be predicted increases, the task becomes more difficult and
the probability that the oracle gave sub-optimal predictions also increases. For these reasons, overall
performance decreases. For example, Figures 2b and 3a show that the network is less efficient at
correctly predicting the two most influential nodes with high confidence, and the maximal proportion
of solved graphs doesn’t go above 70% on average.
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(a) 2 seed nodes, 30 message passing steps, between 10 and 25 nodes per graph with
PMIA heuristic.
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(b) 2 seed nodes, 30 message passing steps and between 10 and 25 nodes per graph with
weighted degree heuristic.

Figure 3: Loss, number of correctly predicted node and proportion of solved examples.

Although PMIA was built for time efficiency, label generation is still the main bottleneck in the
training of the network, which prevents one from training for a very large number of steps and/or
work with larger graphs. The Weighted Degree heuristic which consists in selecting k seeds that have
maximum total out-connection weight, is naturally much faster than PMIA at computing a set of
maximum influence nodes. If the network is able to learn from such a heuristic, it would allow for
much more thorough training on larger scale examples. This heuristic, although sub-optimal like
PMIA, has a very advantageous computational complexity of O(NV ) where NV is the number of
nodes in the graph. Figure 4 shows a benchmark of both algorithms on a fixed graph with increasing
number of seed nodes and on graphs of increasing size with fixed number of seed nodes to select. It
notably highlight the overall polynomial complexity of PMIA compared to the linear complexity of
the weighted degree heuristic.
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Figure 4: Comparison of execution time in seconds for PMIA and the weighted degree heuristic. First
plot shows the execution time with a fixed set of nodes and an increasing number of seeds. Second
plot shows the execution time for 5 seeds and a graph of increasing size.

The weighted degree heuristic is frequently used for selecting seeds in influence maximization and
Kempe, Kleinberg, and Tardos (2003)’s experimental results show it works quite well in practice
compared to other heuristics. We started by replacing the PMIA algorithm by the Weighted Degree
heuristic to try experiments with larger graphs.

Influence spread, although hard to compute exactly, can be estimated as a mean of evaluating
performance of a IM algorithm by simulating the random process of the IC model. More specifically,
the process of influence spread is simulated 500 time for each graph from the test set. Edge outcomes
are pseudo-randomly determined every time by sampling from a Bernoulli random variable with
parameter the transition probability of the edge. This method was for example used by Kempe,
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Figure 5: Loss, number of correctly predicted node and proportion of solved examples for 2 seed
nodes, 10 message passing steps and between 50 and 100 nodes per graph using Weighted Degree
heuristic.

Kleinberg, and Tardos (2003) to estimate the efficiency of their algorithms. We use it here to estimate
the performance of a graph network trained on a specific type of graphs to evaluate the ability of
the network to generalize to data unobserved during training. This is done for a graph trained to
estimate the maximum influence node of a graph, corresponding to the training curves of Figure 1a.
We evaluate its performance on graph with similar rate of edges than the training set, with nodes in
the range 10-25 and in the range 25-100. The experiments with larger will allow us to estimate how
well the network generalizes to larger graphs when trained on graphs of a given size.
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(a) Influence spread for 10-25 nodes (same distribution
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(b) Influence spread for 25-100 nodes, same edge rate
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(c) Influence spread for 25-100 nodes, lower edge rate

Figure 6: Estimated influence spread for a graph trained to predict the maximum seed node and the
other two heuristics.

Figure 6a shows the estimated influence spread as a function of the number of nodes for graphs
of sizes that are within the range of the training set. The network is able to closely match the
performances of the PMIA algorithm. This is expected since the network is able to predict very
accurately the maximum influence node in the graph. Figure 6b shows the same setup with graphs
bigger than the input graph (up to 4 times bigger). Figure 6c corresponds to a setup where graph were
made a lot shallower than in the input distribution (rate (0.2, 0.3) against (0.5, 0.6) for the inputs, see
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the first paragraph of section 4 for details about the rate). It also appears on Figure 7 that even on
a task were the performance of the graph network was lower (60% graphs solved), the estimated
influence spread is still comparable to the target heuristic of the graph.
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Figure 7: Estimated influence spread for a graph trained to predict the 2 maximal seed nodes and the
other two heuristics.

It seems that the network was able to very accurately match and reproduce the performance of PMIA,
even for data that was previously unseen and which is coming from a radically different distribution
than the input one. This is very promising regarding graph networks, since it could mean that with a
restricted training, a network is still able to achieve significant generalization. The generalization
property observed here is similar to observations already made regarding the properties of graph
networks for combinatorial optimization problems (Khalil et al., 2017; Kool, Hoof, and Welling,
2018) that can be explained in part by graph networks’ entity- and relation-centric organization
(P. W. Battaglia et al., 2018).

5 Conclusion

From the experiments presented here, it appears that the main limitation to using graph networks for
solving the influence maximization problems lies in the fact that it is both time consuming and hard
to generate labeled training examples that are of sufficiently high quality for letting the network learn
efficiently. The main trade-off is between speed of label generation (number of training examples
that can be created) and the gap between generated examples and the optimal solution.

The influence maximization problem is NP-Hard and the existing methods for computing solutions
are either efficient but inaccurate, or accurate but hardly suitable for a large scale setting. However,
as the experiments showed, graph networks seem to need both accurate and computationally efficient
methods for training. Even if such a method existed, it wouldn’t allow the network to learn more
than the working solution it has been shown and wouldn’t exceed the performance of the oracle.
A way to cope with this problem could be to give the network solved and labeled graphs based on
real-world data, but there doesn’t exist any labeled dataset for this kind of tasks since the problem
itself is NP-hard and influence spread cannot be reliably observed in a real-world network such as a
social network.

However, as we’ve showed in our experiments, graph net seems to be capable of reaching the same
performance as PMIA. We believe it may be less computationally expensive once it is trained, which
could accelerate the IMlinUCB algorithm proposed by Wen et al. (2016) while still achieving the
same results.These assumptions need computers with high processing power to be properly verified.
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Appendices
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Figure 8: 1 seed
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Figure 9: 2 seeds
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