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Influence Maximization
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Presentation
Influence propagation

● Propagate ideas or influence within a network
● Diffusion of medical or technological innovation
● Spread of diseases

How can influence propagation be modeled and estimated ? 

Compute the set of maximum expected influence nodes ? 
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How to solve influence maximization
Independent cascade model

● Graph (V, E, w)
● All edges have probability w(e) of propagating 

influence

Influence maximization

● Select set S of k activated nodes 
● f(S) is the expected number of activated nodes

Goal: maximize f(S) with |S| = k
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Algorithms - Greedy
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Complexity is kC with C the complexity of computing the influence spread for a 
given set. 

→ The problem is intractable but can be approximated by sampling 
     the diffusion process

            Trade-off between speed and precision of approximation

This algorithm is very slow in practise.



Algorithms - Faster heuristics
● PMIA [2]: an algorithm based on computing the maximum influence in-out 

arborescence of the nodes (within a threshold) and estimate the best 
incremental influence.

● Weighted degree: select every new node as the one with maximum outgoing 
weights
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Graph networks
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Presentation
Models that operate on graph-structured data

Graphs can be represented as nodes, edges and 
global attributes.

Operations are performed sequentially on edges, 
nodes and global attributes.
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Figure from [3]
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Motivations
Most algorithms are either computationally very expensive or sub-optimal.

If graph networks can match the performance of these algorithms, it might provide 
a more scalable alternative for influence maximization.

Fast

Sub-optimal

Slow

Close to optimalRandom PMIA Greedy
Weighted 
degree
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Experiments
Use a graph network to compute the maximum influence set.

● Edges are represented by the transition probability and log-transition 
probability

● Nodes have a binary indicator of whether or not they belong to the MI set

Encode Process Decode
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Results - 1 node - Training

● Weighted degree

● PMIA
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Results - 1 node - Processing

Step 1 Step 3 Step 7 Step 10
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Results - 1 node - Expected influence spread

● Graph network generalizes very well (bigger and shallower graphs)
● Approximately the same expected influence spread as PMIA, even on graphs 

never seen
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Results - 2 nodes - Training

● Weighted degree

● PMIA
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Results - 2 nodes - Processing

Step 1 Step 3 Step 7 Step 10
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Results - 2 nodes - Expected influence spread

● Task were GN did not match PMIA’s output as accurately
● Still high expected IS (slightly higher than PMIA)

→ Does GN learn its own better/equal IM solver ?
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Results - 5 nodes

PMIA

Step 1 Step 8 Step 16 Step 30 18



Results - 5 nodes

Weighted

Degree
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Results - 10 nodes

PMIA

Step 1 Step 8 Step 16 Step 30 20



Conclusion & Perspectives
● Extension to larger scale results : more nodes/edges and larger seed sets.
● Investigate the generalization properties that were observed on small sets of 

seed nodes.
● See how it compares in a more challenging setting such as online IM against 

IMLinUCB [1].

Graph networks seem like a very promising way of tackling the IM problem but 
suffer from the constraints of currently existing algorithms to effectively learn.
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