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Influence Maximization



Presentation

Influence propagation

e Propagate ideas or influence within a network
e Diffusion of medical or technological innovation
e Spread of diseases

How can influence propagation be modeled and estimated ?

Compute the set of maximum expected influence nodes ?



How to solve influence maximization ﬁf‘”§

Independent cascade model

e Graph (V,E, w)
e All edges have probability w(e) of propagating

influence @
Influence maximization
e Select set S of k activated nodes ﬁf g 1@
e f(S) is the expected number of activated nodes
Goal: maximize f(S) with |S| = k é



Algorithms - Greedy

Algorithm 1 Greedy(k, f)
1: initialize S = ()
: fori =1tok do

2

3: select u = argmax,ev—s(f(SU{w}) — f(S))
4: S=Su{U}
5

6

: end for
: output S

Complexity is kC with C the complexity of computing the influence spread for a
given set.
— The problem is intractable but can be approximated by sampling
the diffusion process
Trade-off between speed and precision of approximation

This algorithm is very slow in practise.



Algorithms - Faster heuristics

e PMIA[2]: an algorithm based on computing the maximum influence in-out
arborescence of the nodes (within a threshold) and estimate the best

incremental influence.

e \Veighted degree: select every new node as the one with maximum outgoing
weights



Graph networks



Presentation

Models that operate on graph-structured data

Graphs can be represented as nodes, edges and
global attributes.

Operations are performed sequentially on edges,
nodes and global attributes.
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Graph Networks For Influence
Maximization



Motivations

Most algorithms are either computationally very expensive or sub-optimal.

If graph networks can match the performance of these algorithms, it might provide
a more scalable alternative for influence maximization.
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Experiments

Use a graph network to compute the maximum influence set.

e Edges are represented by the transition probability and log-transition
probability
e Nodes have a binary indicator of whether or not they belong to the Ml set
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Results - 1 node - Training
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Results - 1 node - Processing

Step 10
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Results - 1 node - Expected influence spread
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e Graph network generalizes very well (bigger and shallower graphs)

e Approximately the same expected influence spread as PMIA, even on graphs
never seen
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Results - 2 nodes - Training
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Results - 2 nodes - Processing
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Results - 2 nodes - Expected influence spread
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e Task were GN did not match PMIA’s output as accurately
e Still high expected IS (slightly higher than PMIA)

— Does GN learn its own better/equal IM solver ?
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Results - 5 nodes

Loss evolution during training Proportion of correctly classified nodes Proportion of solved graphs
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esults - 5 nodes
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Results - 10 nodes

Loss evolution during training Proportion of correctly classified nodes Proportion of solved graphs
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Conclusion & Perspectives

e Extension to larger scale results : more nodes/edges and larger seed sets.
e Investigate the generalization properties that were observed on small sets of

seed nodes.
e See how it compares in a more challenging setting such as online IM against

IMLinUCB [1].

Graph networks seem like a very promising way of tackling the IM problem but
suffer from the constraints of currently existing algorithms to effectively learn.
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