Graph networks for influence maximization

Hugo Cisneros Hind Dadoun

Supervisors: Peter Battaglia and Michal Valko

Influence Maximization

Presentation

Influence propagation

- Propagate ideas or influence within a network
- Diffusion of medical or technological innovation
- Spread of diseases

How can influence propagation be modeled and estimated ?

Compute the set of maximum expected influence nodes ?

How to solve influence maximization

Independent cascade model

- Graph (*V*, *E*, *w*)
- All edges have probability *w*(*e*) of propagating influence

Influence maximization

- Select set *S* of *k* activated nodes
- f(S) is the expected number of activated nodes

Goal: maximize f(S) with |S| = k

Algorithms - Greedy

Algorithm 1 Greedy(k, f)

1: initialize $S = \emptyset$ 2: for i = 1 to k do 3: select $u = \arg \max_{w \in V-S} (f(S \cup \{w\}) - f(S))$ 4: $S = S \cup \{U\}$ 5: end for 6: output S

Complexity is *kC* with *C* the complexity of computing the influence spread for a given set.

→ The problem is intractable but can be approximated by sampling the diffusion process Trade-off between speed and precision of approximation

This algorithm is very slow in practise.

Algorithms - Faster heuristics

• PMIA [2]: an algorithm based on computing the maximum influence in-out arborescence of the nodes (within a threshold) and estimate the best incremental influence.

• Weighted degree: select every new node as the one with maximum outgoing weights

Graph networks

Presentation

Models that operate on graph-structured data

Graphs can be represented as nodes, edges and global attributes.

Operations are performed sequentially on edges, nodes and global attributes.

Graph Networks For Influence Maximization

Motivations

Most algorithms are either computationally very expensive or sub-optimal.

If graph networks can match the performance of these algorithms, it might provide a more scalable alternative for influence maximization.

Experiments

Use a graph network to compute the maximum influence set.

- Edges are represented by the transition probability and log-transition probability
- Nodes have a binary indicator of whether or not they belong to the MI set

Results - 1 node - Training

• Weighted degree

• PMIA

Results - 1 node - Processing

Step 1

Step 3

Step 7

Step 10

Results - 1 node - Expected influence spread

- Graph network generalizes very well (bigger and shallower graphs)
- Approximately the same expected influence spread as PMIA, even on graphs never seen

Results - 2 nodes - Training

• Weighted degree

• PMIA

Results - 2 nodes - Processing

Results - 2 nodes - Expected influence spread

- Task were GN did not match PMIA's output as accurately
- Still high expected IS (slightly higher than PMIA)
- \rightarrow Does GN learn its own better/equal IM solver ?

Results - 5 nodes

Step 1

Step 16

Step 30 18

Results - 5 nodes

Results - 10 nodes

Step 1

Step 16

Step 30 20

Conclusion & Perspectives

- Extension to larger scale results : more nodes/edges and larger seed sets.
- Investigate the generalization properties that were observed on small sets of seed nodes.
- See how it compares in a more challenging setting such as online IM against IMLinUCB [1].

Graph networks seem like a very promising way of tackling the IM problem but suffer from the constraints of currently existing algorithms to effectively learn.

References

- 1. Wen, Z., Kveton, B., Valko, M. & Vaswani, S. Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback. NIPS 2016
- 2. Chen, W., Wang, C. & Wang, Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. *KDD '10*
- 3. Battaglia, P. W. *et al.* Relational inductive biases, deep learning, and graph networks. *arXiv:1806.01261 [cs, stat]* (2018).