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Context

The task

Classify user-generated drug-related questions into 51 classes

without information on the meaning of each class.

Overview

• Dataset analysis & text pre-processing

• Model selection

• Results and analysis

2/17



Dataset analysis

Characteristics

• 8028 training sentences, 2035 test sentences

• 9542 words before spell checking → 7321 after

Class repartition — training set
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⇒ 50% accuracy with the first 5 classes only !
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Text pre-processing

Deal with noisy inputs

High variability in text inputs:

• Accentuated or not très/tres

• Multiple punctuation signs pilule mini dosée..

• Abbreviations ts, o, aret

• Apostrophe qu’y, l’, etc.

etc.

Deal with spelling errors

Spell checking algorithms with french word count dictionary and

drug names scraped from Vidal.
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Methods — Linear model

Start simple with linear models

Sentence representations:

• Bag of words

• Tf-Idf: weight words by frequency in sentence compared to

corpus frequency

tf-idf(t, d) = ft,d · log
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Methods — Linear model

Logistic regression — Mathematical formulation:

min
w ,c

1

2
wTw + C

n∑
i=1

log(exp(−yi (XT
i w + c)) + 1).

Hyper parameter tuning

4-fold cross validation on the training set (not more because

some classes have only 5 examples) to choose the parameter C.
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Results for linear model
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Performance

Although the model is very simple. These are the best

performance I got among all models.
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Decision trees

Idea

Iteratively make splits that maximize a criterion.

Random forests Build several estimators on random subsets of

the features and average all results

Extra randomized forests Splitting thresholds are also drawn at

random

The goal of both extension is to make the algorithm more

generalizable.

The intuition for using decision tree is that classes could be defined

by complex rules such as: “word A and B are present in

conjunction with the absence of word C”.
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Decision trees — Results

Decision tree Random Forest
500 est.

Random Forest
1500 est.

Extra-Randomized
 forests-1500 est.
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Relatively poor results compared to the logistic regression. And

this even when tuning the parameters → something is missing to

capture what defines a class.
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Neural networks

Idea

Use the properties of convolutional networks (translation

invariance) on the text. ⇒ apply 1D convolutions on sentence

inputs.
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Sentence representations
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Architecture inspired from [ZW15] and the challenge’s baseline
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Word embeddings

Idea

Learn a representation of words in a vector space with interesting

structures.

The learned word representations are usually closer for similar

words and have useful spatial structures that make them ideal for

classification purposes.

FastText multi-lingual embeddings [Gra+18]

Pre-trained words embeddings trained with the CBOW model on

a dump of the french Wikipedia.
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Compare NN models
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Results

Pre-trained embeddings

certainly help with the

performance but did not

match the logistic

regression.

Possible reasons ?

• Word embeddings of

too low quality ?

• Pre-processing ?
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Error analysis and conclusion
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Error analysis and conclusion
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Possible improvements

• Better embeddings: use embeddings trained on medical NLP

datasets (I couldn’t find one in french).

• Use ensemble methods with one ore more of the models

presented above (they might have complementary strength).

• With class information (either explicit class names of simple

tf-idf on classes) one could get “easy wins” by designing

specific rules when possible.
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Thank you!
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