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Abstract—In this paper we propose an approach for measuring
growth of complexity of emerging patterns in complex systems
such as cellular automata. We discuss several ways how a
metric for measuring the complexity growth can be defined.
This includes approaches based on compression algorithms and
artificial neural networks. We believe such a metric can be useful
for designing systems that could exhibit open-ended evolution,
which itself might be a prerequisite for development of general
artificial intelligence. We conduct experiments on 1D and 2D
grid worlds and demonstrate that using the proposed metric we
can automatically construct computational models with emerging
properties similar to those found in the Conway’s Game of Life,
as well as many other emergent phenomena. Interestingly, some
of the patterns we observe resemble forms of artificial life. Our
metric of structural complexity growth can be applied to a wide
range of complex systems, as it is not limited to cellular automata.

I. INTRODUCTION

Recent advances in machine learning and deep learning
have had successes at reproducing some very complex feats
traditionally thought to be only achievable by living beings.
However, making these systems adaptable and capable of
developing and evolving on their own remains a challenge that
might be crucial for eventually developing AI with general
learning capabilities (for example as is further discussed in
[1]). Building systems that mimic some key aspects of the
behavior of existing intelligent organisms (such as the ability
to evolve, improve, adapt, etc.) might represent a promising
path. Intelligent organisms — e.g., human beings but also
most living organisms if we consider a broad definition of
intelligence — are a form of spontaneously occurring, ever
evolving complex systems that exhibit these kinds of proper-
ties [2]. The ability to sustain open-ended evolution appears to
be a requirement in order to enable emergence of arbitrarily
complex adaptive systems.

Although a rigorous attempt at defining intelligence or life
is beyond the scope of this paper, we assume that a system
we might identify as evolving, with the potential of developing
intelligence, should have the property of self-preservation and
the ability to grow in complexity over time. These properties
can be observed in living organisms [2] and should also be a
part of computational models that aim to mimic them.
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To recognize self-preservation and growth in complexity,
one should be able to detect emerging macro-structures com-
posed of smaller elementary components. For the purpose of
obtaining computational models that grow in complexity over
time, one should also be able to determine the amount of
complexity these systems contain. We propose and discuss
in this paper several ways of estimating the complexity and
detecting the presence of emerging and stable patterns in
complex systems such as cellular automata. We show that
such metrics are useful when searching the space of cellular
automata with the objective of finding those that seem to
evolve in time.

II. RELATED WORK

A. Artificial life and open-ended evolution

Several works have attempted to artificially create open-
ended evolution. A non-exhaustive list of some well known
systems include Tierra [3], Sims [4], Avida [5], Polyworld
[6], Geb [7], Division Blocks [8] and Chromaria [9]. Designs
focusing on an objective, and making use of reinforcement
learning methods to drive evolution are also being studied,
e.g. in [10]. Most of these simulated “worlds” have had some
success in reproducing key aspects of evolving artificial life,
enabling the emergence of complex behavior from simple
organisms. However, they still work within constrained simu-
lated environments and usually consider organisms composed
of elementary building blocks, while they don’t work outside
of this usually very constrained framework. Divergent and cre-
ative evolutionary process could be happening at a much lower
conceptual level with fewer assumptions. For this reason, we
consider cellular automata in the rest of the paper because they
rely on a very few assumptions while offering a very large
expressive power and a potentially wide range of behaviors
that can be discovered. However, the metrics defined in this
paper have the potential to be applied to other types of complex
systems as discussed in Section VII.

B. Cellular automata

Cellular automata are very simple systems, usually defined
in one or two dimensions, composed of cells that can be
in a set of states. The cells are updated in discrete time
steps using a transition table that defines the next state of
a cell given the states of its neighbors. They were originally
proposed by Stanislaw Ulam and studied by Von Neumann
[11], who was interested in designing a computational system



that can self-reproduce itself in a non-trivial way. The trivial
self-reproducing patterns were then those that do not have
potential to evolve, for example the growth of crystals.

Stephen Wolfram later took a more bottom up approach,
beginning with the study of the simple 1D binary cellular
automata (CA), and identifying four qualitative classes of
cellular automaton behavior [12]:

Class 1 evolves to a homogeneous state.
Class 2 evolves to simple periodic patterns.
Class 3 yields aperiodic disordered patterns.
Class 4 yields complex aperiodic and localized structures,

including propagating structures.
Wolfram and his colleagues also studied 2D CA using tools
from information theory and dynamical systems theory, de-
scribing the global properties of these systems in terms of
entropies and Lyapunov exponents [13].

Christopher Langton and colleagues also studied CA dy-
namics [14] — e.g. using the λ parameter [15] — and designed
a self-replicating pattern much simpler than Von Neumann’s
[16], now known as Langton’s loops. The main issues with his
system and Von Neumann’s universal replicator is the fact that
they are very fragile and based on a large amount of human
design. As a consequence, although they do self-replicate,
they cannot increase in complexity and are not robust to
perturbations or unexpected interactions with the environment.

A genetic algorithm-based search for spontaneously occur-
ring self-replicating patterns in 2D cellular automata with
several states was undertaken in [17] using entropy measures
of the frequency distribution of 3× 3 patterns.

C. Compression and complexity

Compression has often been used as a measure of com-
plexity. Lempel and Ziv have introduced in [18] the now
widespread Lempel-Ziv (LZ) algorithm as a method for mea-
suring the complexity of a sequence. By constructing back-
references to previous parts of a string, the LZ algorithm is
capable of taking advantage of duplicate patterns in the input
to reduce its size. The DEFLATE algorithm that we use in
the following section combines LZ with Huffman coding for
efficient representation of the symbols obtained after the first
step. It is one of the most widespread compression algorithms
and is for instance used in gzip and PNG file compression
standards.

The PAQ compression algorithm series [19] is an ensem-
ble of compression algorithms initially developed by Matt
Mahoney with state of the art compression ratio on several
compression benchmarks. Better compression of an input
means a better approximation of the minimum description
length and implicit understanding of more of the underlying
patterns in input data. The usefulness of a better compressor
is that it can detect much more complex and intricate patterns
that aren’t simple repetitions of previous patterns.

In [20], H. Zenil investigates the effects of a compression-
based metric to classify cellular automata and observes that
it results in a partitioning of the space of 1D CA into
several clusters that match Wolfram’s classes of automata.

He also used this approach on the output of simple Turing
machines and some 1D automata with more than two states
and larger neighborhoods. Extensions of this work include
asymptotic sensitivity analysis of the compressed length for
input configurations of growing complexity, as introduced in
[21], [22].

Additionally, image decompression time as an approxi-
mation of Bennet’s logical depth [23], [24] and the output
distribution of simple Turing machines combined with block
decomposition of CA to approximate their algorithmic com-
plexity have also been investigated [25], [26]. However, the
possible extent to which such measures of complexity could be
applied to more complex automata and other complex systems
has not yet been extensively studied. For a review of several
measures of complexity and their applications, see [27].

III. COMPRESSION-BASED METRIC

A cellular automaton of size n in 1D can be represented
at time t by its grid-state S(t) = {c(t)1 , ..., c

(t)
n } where each

ci (also called a cell) can take one of k possible values
(representing the possible states), and a transition rule φ. The
transition rule is defined with respect to a neighborhood radius
r with the mapping φ(c

(t)
i−r, ..., c

(t)
i ..., c

(t)
i+r) = c

(t+1)
i that maps

{1, ..., k}2r+1 to {1, ..., k}. The quantity 2r + 1 corresponds
to the number of cells taken into account for computing the
next state of a cell, namely that cell itself and r neighboring
cells in both directions.

Simulating a CA amounts to the recursive application of
this mapping φ to an initial state S(0) = {c(0)1 , ..., c

(0)
n }.

In the rest of the paper, we consider cyclic boundary condi-
tions for the automata, meaning that the indices i− r, ..., i+ r
above are taken modulo n the size of the automaton in 1D.
Boundary conditions can have some effect on a CA’s evolution,
but cyclic boundaries have been empirically observed to have
limited effect on the complexity of automata in 1D [28].

The definition given in the equation above can be extended
to higher dimensional automata by modifying the neighbor-
hood and the definition of φ. A 2D neighborhood of radius 1
can be defined as the 3 by 3 square around the center cell —
also called the Moore neighborhood — or by only considering
the four immediate horizontal and vertical neighbors of the
center cell — the Von Neumann neighborhood.

Elementary cellular automata (ECA) are 1D CA with k = 2
and r = 1. There are 23 elements in {1, ..., k}2r+1 and
22

3

= 256 possible different set transition rules that are often
compactly represented as a binary string with 8 bits. The
relatively low number of rules of this type makes it possible
to appreciate the performance of a metric and compare it with
others.

We define the compressed length C of a 1D cellular
automaton at time t as

C(ST ) = length (comp(c1 || c2 || ... cn)) (1)

where || denotes the string concatenation operator and the
cells ci are implicitly converted into string characters (with one
symbol per unique state). comp is a compression algorithm



(a) 6 highest scoring automata.
Only the first 30 timesteps are
shown for readability.

(b) All 256 compressed length
scores

Fig. 1. Compression-based metric on 1D ECA. 1a represents the 1D ECA
evolution with each line being the state of the automaton at a given timestep,
starting from a single cell set to 1. Cells which are in state 1 are represented in
black and cells in state 0 are represented in white. Time increases downwards.
Figure 1b represents the compressed length of the 256 ECA rules, with
different marker and colors corresponding to the obtained KMeans clusters.

that takes a string as input and outputs a compressed string,
and length is the operator that returns the length of an input
string.

Similarly to [29], [20], we use zlib’s C implementation
of DEFLATE to compress the final state of the automaton.
If we apply the above metric to the 256 ECA run for 512
timesteps and initialized with one activated cell in the middle,
we obtain the plot of Figure 1b. This example is re-used in the
paper as a way to easily visualize and check that the defined
complexity measures are coherent with one another. The
colors on Figure 1b were obtained with a KMeans clustering
algorithm applied on the compressed length of the automata
states.

As visible on Figure 1b, rules are clearly separated into
several clusters that turn out to match Wolfram’s classification
of ECA. Class 3 behavior can be found at the top of the
plot (highest compressed length, orange and blue clusters),
Class 1 and 2 are clearly separated at the bottom part (not
detailed here) and Class 4 rules (colored in green) lie in
between the other types of behavior. The 6 highest scoring
rules are shown on Figure 1a and correspond to Class 3
behavior in Wolfram’s classification. Among the classes of
behavior, some sub-clusters can be found that correspond to
similarly behaving rules.

Ultimately, the theoretical goal of using compression al-
gorithms is to approach the theoretical minimum description
length of the input [30]. For very regular inputs, this length
should be relatively small and inversely for random inputs.
However, gzip and PAQ are crude approximations of the
minimum description length, and may only approach it in a
given context. As an example, compressing text data (a task
often performed with gzip in practice) is much more efficient
with a language model that can assign a very low probability
to non grammatically correct sentences. The Kolmogorov
complexity [31] of a cellular automaton is upper bounded
by a value that is independent of the chosen rule, as it is
entirely determined by the transition table, the grid size, initial
configuration and number of steps.

IV. PREDICTOR-BASED METRIC

One obvious limit of using compression length as a proxy
for complexity is the fact that interesting systems mostly have
intermediate compressed length. Compressed length increases
with the amount of disorder in the string being compressed.
Therefore, extreme lengths correspond either to systems that
do not increase in complexity on the lower end of the spec-
trum, or systems that produce a maximal amount of disorder
on the higher end. Neither of them have the potential to create
interesting behavior and increase in complexity. Intermediate
values of compressed length are also hard to interpret, since
average lengths might either correspond to interesting rules or
slowly growing disordered systems.

To cope with this limitation, one should also take into
account the dynamics of complexity, that is how the system
builds on its complexity at a given time as it keeps evolving,
while retaining some of the structures it had acquired earlier.
Compression leverages the amount of repetitions in inputs to
further compress and this may also be used as an estimate of
structure overlap, as explained in the following section.

A. Joint compression

As a way to both measure the complexity and the amount of
overlap between two automata states apart in time, we define
a joint compressed length metric for a delay τ as

C ′
(
S(T+τ), S(T )

)
= C

(
S(T ) || S(T+τ)

)
(2)

where || represents the concatenation operator. This quantity
is simply the compressed length of a pair of global states
— defined at the beginning of III, represented by the letter
S — at two timesteps separated by a delay τ . In 1D,
concatenation means chaining the two string representations
before compressing, and in 2D we can chain two flattened
representations of the 2D grid. This introduces several issues
which we discuss in Section IV-B.

To quantify the amount of overlap between the two global
states, we can compute the ratio of this joint compressed
length with the sum of the two compressed lengths C(St)
and C(St−τ ), thereby forming the joint compression score

µ =
C (St) + C (St−τ )

C ′ (St, St−τ )
(3)

defined for an automaton S, time t and delay τ .
This metric is based on the intuition that if patterns occur

at step T −τ of the automaton’s evolution and are still present
at step T , the joint compressed length will be lower than the
sum of the two compressed length. The idea is illustrated
in Figure 2, where it is pointed out that a stable moving
structure (sometimes called glider or spaceships in Game of
Life) will yield lower joint compressed lengths. This also
applies to structures that self-replicate, grow from a stable
seed or maintain the presence of some sub-structures. Bigger
structures yield a higher compression gain.

Joint compression alone is not sufficient since it only selects
rules that either behave like identity or shift input because they
maximize the conservation of structures through time — as



Fig. 2. Joint compression method illustration. If a structure persists through
time, this will decrease the joint compressed length compared to the sum of
compressed lengths. A persistent structure is circled in red.

illustrated in Figure 3a. However, one may combine the joint
compression score with another complexity measure to only
select rules that exhibit some disorder, or growth in complexity
— as Figure 3b shows (the condition here was a threshold on
the difference of compressed length between initial and final
states).

(a) Highest joint compression
score among the 256 ECA.

(b) With condition on com-
pressed length increase.

Fig. 3. Comparison of the raw joint compression score and the addition of a
complexity increase condition. The high overlap in structures is not enough to
get interesting rules a shown in 3a, but the addition of a complexity threshold
allows to retrieve rules with complex but still structured behavior, as shown
in 3b. Figures are from the same slice of 60 cells over 30 timesteps taken
from larger automata with random initial states. The top row corresponds to
t = 0 and time increases downwards.

B. Count-based predictor

A major issue with the joint compression metric is the fact
that it is designed to compress a linear stream of data. This
is not ideal when considering higher dimensional automata.
Larger sets of transformations have to be considered such as
translations, rotations, flips, etc. Theoretically this should not
be a problem for a good enough linear compression algorithm,
but hardware and software limitations make it impractical to
work with existing algorithms on higher dimensional structures
— with e.g DEFLATE’s upper limit on dictionary size.

These higher dimensional automata might be better at
generating complex dynamics, and the large size of their rule
spaces makes it a challenge to explore. There has been at least
one attempt to deal with these higher dimensional systems [25]
that lacks the scalability to work with large inputs.

An alternative to the linear compression-based method pre-
sented above would be to use compressors optimized for n-
dimensional data (e.g. PNG compression for 2D automata) to
take advantage of spatial correlation for compressing. How-
ever, these compressors are rare for higher dimensional data,
and are usually optimized for one type of input — e.g. images
with PNG.

Another way to tackle the problem is to use a predic-
tion based approach to compression. Similarly to methods
described in [32] and one of the first steps of the PAQ
compression algorithm [19], we learn a statistical model of
input data to predict the content of a cell given its immediate
predecessors. For compression, this is often followed by an
encoding step — using Huffman or arithmetic coding —

that encodes data which contains the least information (least
“surprising” data) with the most compact representation. This
approach can also be related to the texture synthesis method
described in [33], where the authors learn a non parametric
model to predict the next pixel of a texture given a previously
synthesized neighborhood. Additionally, because we don’t
need the operation to be reversible as in regular compression,
it is not necessary to limit the prediction model to making
prediction with predecessors only.

For a global state S = (c1, ...ci, ..., cn), the neighborhood
of cell i with radius r, denoted nr,i is defined as the tuple
nr,i = (ci−r, ...ci−1, ci+1..., ci+r) — without the middle
cell. The goal of this method is to estimate the conditional
probability distribution p(s|nr) of the middle states at timestep
T given a neighborhood of radius r. Assuming cell states given
their neighborhood can be modeled by mutually independent
random variables, the log-probability of global state S(T ) is
written

log p(S(T )) = log
∏N
i=1 p(ci|nr,i) =

∑N
i=1 log p(ci|nr,i) (4)

If the automaton has a very ordered behavior, a model will
predict with high confidence the state of the middle cell given
a particular neighborhood. On the other hand, in the presence
of maximal disorder, the middle cell will have an equal
probability of being in every state no matter the neighborhood.
In the latter case, a predictive model minimizing − log p(S(T ))
would yield a high negative log-probability.

A simple possible predictor for such purpose is a large
lookup table that maps all visited neighborhoods to a prob-
ability distribution over the states that the middle cell can be
in. State distributions for each neighborhood are obtained by
measuring the frequency of cell states given some observed
neighborhoods. We denote by Λ this lookup table, defined for
a window of radius r, which maps all possible neighborhoods
of size 2r+1 (ignoring the middle cell) to a set of probabilities
p over the possible states {s1, ..., sn}, and p can be written
[ps1 , ps2 , ..., psn ]. Λ is defined by

Λ : {s1, ..., sn}2r → ∆n

nr,i 7→ p
(5)

where ∆n denotes the probability simplex in dimension n.
To measure the uncertainty of that predictor, we can com-

pute the cross-entropy loss between the data distribution it was
trained on and its output. We compute the log probability of
the observed data given the model, or the quantity

L = − 1
N

∑N
i=1

∑n
k=1 1{sk}(ci) log Λ(nr,i)sk (6)

where 1{sk} denotes the indicator function of the singleton set
{sk}. An illustration of the counting process is represented in
Figure 4. The quantity L is minimal when the Λ(nr,i)sk always
equal one, which means the state of every cell is entirely
determined by its neighborhood.

We apply this metric to all 256 ECA, with a window radius
of size 3 (the 6 closest neighbors are used for prediction),
and the same settings as for Figure 1b. Cross-entropy loss of



Fig. 4. Count-based predictor method for a radius r = 1. A frequency
lookup table is computed from the global state at time T by considering
all neighborhoods with radius r = 1 (3 consecutive cells but ignoring the
middle cell). Cross-entropy with the automaton at time T quantifies the overall
complexity. This can be compared to the cross-entropy at time T + t for the
amount of overlap.

the lookup table gives the results of Figure 5a. Colors are the
same as in Figure 1b for comparison purposes.

(a) Count-based predictor (b) Neural network-based pre-
dictor

Fig. 5. Average cross entropy loss for the two predictor-based methods on all
256 ECA. Rules are separated in several clusters. The count-based predictor
(left plot) and neural network-based predictor (right plot) were applied with
a neighborhood radius r = 1 and 3.

We note the similarity between this plot and the one from
Figure 1b, with a roughly equivalent resulting classification of
ECA rules, with the exception of rules with low score. Rules
that produce highly disordered patterns are on top of the plot
whereas the very simply behaving rules are at the bottom. This
indicates coherence between the two metrics.

C. Neural network based predictor

Fig. 6. Neural network architecture for predicting a central cell given its
neighbors. Output probabilities are defined for all possible states of the central
cell.

The frequency based predictor described above still has
limitations:
• It doesn’t take into account any redundancy in the input

which may lead to suboptimal predictions (in a CA,
very similar positions might have similar center cell
state distribution, e.g. a glider in Game of Life should
be recognized by the model no matter the rest of the
neighborhood).

• For the same reasons, when considering large window
sizes, the number of possible neighborhood configuration
gets much larger than the number of observed ones,
leading to an input sparsity problem.

More sophisticated models can cope with above limitations
by dealing with high dimensional inputs without sparsity
problems, and taking into account redundancy of inputs and
potential interactions between states for prediction.

We measure the cross-entropy loss of this simple model on
the training set after a standard learning procedure which is
the same for all rules. The procedure is applied to a one hidden
layer neural network with a fixed hidden layer size. We use
a ReLU non-linearity for the hidden layer and a softmax to
obtain the output probabilities.

For n possible states s1, ..., sn, a cell in state sk is repre-
sented as a vector of 0s of size n with a 1 in position k. The
input to the network is the concatenation of these cell vectors
for all cells in the neighborhood. The output of the network is
a vector of size n with the output probability for each state.

Gradient updates are computed during training to minimize
the cross-entropy loss between outputs and target examples.
For a timestep T , we use the training procedure in order to
minimize with respect to θ the following quantity,

L
(T )
θ = − 1

N

N∑
i=1

n∑
k=1

1{sk}

(
c
(T )
i

)
log

[
fθ

(
n
(T )
r,i

)
sk

]
(7)

where the neural network depending on parameter θ is denoted
fθ, and n(T )

r,i , the neighborhood of cell i with radius r at time
T is defined in the same way as in eq. (6). Loss is computed
with respect to the testing set at time T + τ by computing the
same quantity at this subsequent timestep.

The training procedure is selected to achieve reasonable
convergence of the loss for the tested examples. It must be
well defined and stay the same to allow for comparison of the
results across several rules. Score at timestep T for a delay τ
is computed with the following formula

µτ =
L(T )

L(T+τ)
(8)

where L(T+τ) is the log probability of the automaton state at
timestep T + τ (defined in eq. (7)) according to a model with
parameters learned during training at timestep T and L(T ) is
the same as in eq. (7). The value µτ will be lower for easily
“learnable” global states that do not translate well in future
steps — they create more complexity or disorder — thereby
discarding slowly growing very disordered structures. Higher
values of µτ correspond to automata that have a disordered
global state at time T that can be transposed to future timesteps
relatively well. Those rules will tend to have interesting spatial
properties — not trivially simple but not completely disordered
because the model transposes well — as well as a large amount
of overlap between a given step and the future ones, indicating
persistence of the spatial properties from one state to another.
We also selected the metric among other quantities computed
from L(T ) and L(T+τ) because it yielded the best score on
our experimental datasets.



TABLE I
EXPERIMENTAL RESULTS - AP SCORES

Neural network r = 1 2 3 4 5
5 steps 0.387 0.448 0.541 0.525 0.534
50 steps 0.377 0.433 0.517 0.491 0.542

300 steps 0.358 0.454 0.488 0.527 0.525
Lookup table r = 1 2

5 steps 0.092 0.070
50 steps 0.102 0.070

300 steps 0.093 0.069

This table shows the average precision (AP) scores obtained on the dataset
of section V with the neural network-based and lookup table-based methods.
Results are show for delays τ = 5, 50, 300 and several radii values r.

V. EXPERIMENTS

We carried out several experiments on a dataset of 500
randomly generated 3 states (n = 3) rules with radius r =
1. Those rules were manually annotated for interestingness,
defined as the presence of visually detectable non trivial
structures. The dataset contains 46 rules labeled as interesting
and 454 uninteresting rules. Ranking those rules with the
metrics introduced above allows to study the influence of
parameters and the adequacy between interestingness as we
understand it and what the metric measures.

The task of finding interesting rules can either be framed as
a classification problem or a ranking problem with respect to
the score we compute on the dataset. The performance of our
metric can be measured with usual evaluation metrics used on
these problems, and notably the average precision (AP) of the
resulting classifier.

Average precision scores for the neural network and count-
based methods for time windows of 5, 50 and 300 timesteps
are given in Table I. Scores were computed on automata of
size 256× 256 cells, ran for 1000 timesteps (T + τ = 1000).
Scores were computed for radii ranging from 1 cell (8 nearest
neighbors) to 5 cells (120 neighbors), with a one layer neural
network containing 10 hidden units trained for 30 epochs with
batches of 8 examples. Best AP for each time window is shown
in bold. Results for the frequency lookup table predictor are
only shown for r = 1, 2 because of sparsity issues with the
lookup table from r = 2 and above making it unpractical to
use the table — 324 possible entries for the lookup table with
r = 2 against only 2562 observed states.

From these experiments, bigger radii appear to perform
slightly better, although not in a radical way. Since the number
of neighbors scales with the square of the radius, reasonably
small radii might be a good trade-off between performance
and computational cost of the metric.

We also study the performance of our metrics — lookup
table and neural network-based — as inputs of a binary
classifier against two simple baselines on a random 70/30
split of our dataset. The first baseline classifies all example
as negative. The second baseline is based on compressed
length as defined in [20] and computed by choosing a pair of
thresholds that minimize mean square error when classifying
examples in between as positive — this is based on the
observation made in Section III that interesting rules have

TABLE II
EXPERIMENTAL RESULTS - ACCURACY

Metric Baseline Compressed length
[20]

Lookup
Table

Neural
network

Accuracy 0.90 0.913 0.926 0.953

Accuracy of each metric of complexity when used to classify which
automatons do evolve interestingly, compared against the trivial all-negative
baseline and the compressed length metric [20].

intermediate compressed lengths. Results are in Table II where
only the best radius is shown. The lookup table performs better
than the baselines but the neural network gives the best score.

Above experiments demonstrate the capability of our pro-
posed metric to match a subjective notion of interestingness of
our labeling. For instance, the top 5 and top 10 scoring rules
of the best performing configuration (r = 3, τ = 5) are all
labeled as interesting, and top 100 scores contain 41 of the 46
rules labeled as interesting.

VI. DISCUSSION

In this section, we discuss the results obtained by using the
metric of equation (8) and the way they can be interpreted.

a) One dimensional cellular automata: By applying the
metric on the same example as before, we again obtain a plot
with a rule classification that matches a visual appreciation
of complexity of 1D CA. Results are shown on Figure 5b.
Similarly to the previous cases, rules we might label as
interesting are unlikely to be either at the top or bottom of
the plot.

b) Two dimensional cellular automata: Simulations con-
ducted with 2D CA used grids of size 256×256. Automata
were ran for 1000 steps (the metric is measured with respect to
the reference time T = 1000). Rules are defined with a table
of transitions from all possible neighborhood configurations
with radius r = 1 (3×3 squares) to a new state for the
central cell. Unbiased sampling of rules, obtained by uniformly
sampling the resulting state for each transition independently,
overwhelmingly produces rules with a similar amount of
transitions towards each state and fails to produce rules without
completely disordered behavior more than 99% of the time.

Therefore, we adopt a biased sampling strategy of the
rules, selecting the proportion of transitions towards each state
uniformly on the simplex — e.g for 3 states we might get the
triple (0.1, 0.5, 0.4) and sample transitions according to these
proportions. This parametrization can be related to Langton’s
lambda parameter [15] that takes into account the proportion of
transitions towards a transient (inactive) state and all the other
states. We obtain approximately 10% interesting rules with
this sampling as the proportions of our experimental dataset
show.

Using the neural network-based complexity metric, we were
able to find rules with interesting behavior among a very
large set through random sampling. Some of these rules are
shown in the paper. Figure 8 displays three 2D rules that
were selected manually upon visual inspection among the 20
highest scoring for metric µ50 (defined in eq. (8)) of a sample



Fig. 7. Rules with 3 states that have spontaneously occurring glider structures.
The gliders are the small structures that are outside of the center disordered
zone. Some of them move along the diagonals while some others follow
horizontal or vertical paths. Note that some repeating patterns occur also in
the more disordered center zone.

(a) Timestep T (b) Timestep T + 50

Fig. 8. Spontaneous glider formation and evolution is observed for some high
scoring 2 states rules. Each row corresponds to a rule, with a 50 timesteps
difference between the two columns. Gliders are marked with a gray square.
Runs were initialized with a small 20 by 20 disordered square (uniformly
sampled among possible configuration) in the center simulated for up to 400
steps.

of 1700 randomly generated 2-states 3 by 3 neighborhood
rules. For comparison, Conway’s Game of Life rule (GoL)
ranks in the top 1% of the 2500 rules mentioned above for
runs that don’t end in a static global state. We observe that
spontaneous glider formation events appear to be captured
by our metric. Although gliders in cellular automata are a
simple process that can manually be created, detection of their
spontaneous emergence within a random search setting is a
first step towards finding more complex macro structures that
can emerge out of simple components. Rules with low scores
are overwhelmingly of the disordered kind.

Figures 7, 9 and 10 show some three states rules that were
selected through random sampling on the simplex with the
neural-network based metric. They were selected among the
30 highest scoring rules out of 2500 randomly selected 3 states
rules. Their behaviors all involve the growth and interaction
of some small structures made of elementary cells.

All automata were initialized with a random disordered

Fig. 9. Rules with 3 states that generate cell-like interacting structures. These
patterns are either static or moving and can interact with one another to
generate copies of themselves and other patterns. Note the very similar micro-
structures that are repeated at several places in the space.

Fig. 10. Rules with surprising behaviors that are highly structured but
complex. Those rules were selected among high-ranking rules for the neural-
network based complexity metric. They all exhibit structurally non trivial
behavior.

square of 20 by 20 cells in the center. In the Figures mentioned
above, colors were normalized with the most common state set
to blue. Figure 7 shows rules that spontaneously emit gliders
that go through space in a direction until they interact with
some other active part of the automaton. Figure 9 shows rules
that generate small structures of between four and thirty cells
that are relatively stable and interact with each other. These
elementary components could be a basis for the spontaneous
construction of more complex and bigger components. Fig-
ure 10 shows some other rules from this set of high ranking
automata. They highlight the wide range of behaviors that can
be obtained with these systems. Interesting rules from this
paper can be found, along with other examples, in the form
of animated GIFs1.

For some of these rules interesting patterns appear less
frequently in smaller grids, indicating that the size of the space
might impact the ability to generate complex macro-structures.
Increasing the size of the state space to very large grids might
therefore make it easier generating very complex patterns.

VII. CONCLUSION

In this paper, we have proposed compression-inspired met-
rics for measuring a form of complexity occurring in complex
systems. We demonstrated its usefulness for selecting CA
rules that generate interesting emergent structures from very
large sets of possible rules. In higher dimensions where linear
compression — as in gzip — is not sufficient to find complex
patterns, our metric is also useful.

1https://bit.ly/interesting automata



We study 2 and 3 states automata in the paper and we
plan to investigate the effects of additional states or larger
neighborhoods on the ability to evolve more structures and
obtain more interesting behaviors.

In the future, we will publish the dataset and code to enable
reproducibility and improvement on the results reported here2.
The metrics we introduce in this paper could be used to
design organized systems of artificial developing organisms
that grow in complexity through an evolutionary mechanism.
A possible path toward such systems could start by creating an
environment where computational resource allocation favors
the fraction of subsystems that perform the best according to
our measure of complexity.

The proposed metric is theoretically applicable to any
complex system where a notion of state of an elementary
component and locality can be defined. With these require-
ments fulfilled, we can build a similar prediction model that
uses information about local neighbors to predict the state of
a component and thereby assess the structural complexity of
an input.

We believe that the capability of creating evolving systems
out of such elementary components and with few assumptions
could be a step towards AGI. By devising ways to guide
this evolution in a direction we find useful, we would be
able to find efficient solution to hard problems while retaining
adaptability of the system. It might be suitable to avoid over-
specialization that can happen in systems designed to solve a
particular task — e.g. reinforcement learning algorithms that
can play games, and supervised learning — by staying away
from any sort of objective function to optimize and by leaving
room for open-ended evolution.
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