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ABSTRACT

Adpversarial attacks in NLP challenge the way we look at language models. The
goal of this kind of adversarial attack is to modify the input text to fool a classi-
fier while maintaining the original meaning of the text. Although most existing
adversarial attacks claim to fulfill the constraint of semantics preservation, careful
scrutiny shows otherwise. We show that the problem lies in the text encoders used
to determine the similarity of adversarial examples, specifically in the way they
are trained. Unsupervised training methods make these encoders more susceptible
to problems with antonym recognition. To overcome this, we introduce a sim-
ple, fully supervised sentence embedding technique called Semantics-Preserving-
Encoder (SPE). The results show that our solution minimizes the variation in the
meaning of the adversarial examples generated. It also significantly improves the
overall quality of adversarial examples, as confirmed by human evaluators. Fur-
thermore, it can be used as a component in any existing attack to speed up its
execution while maintaining similar attack success|']

1 INTRODUCTION

Deep learning models have achieved tremendous success in the NLP domain in the past decade.
They are applied in diverse critical areas such as hate speech filtering, moderating online discussions,
or fake news detection. Successful attacks on these models could potentially have a devastating
impact. In recent years, many researchers have highlighted that language models are not as robust as
previously thought (Jin et al.,|2020; [He et al., 2016} Zhao et al., 2018}, |Szegedy et al.| [2014; [Kurakin
et al., 2016azb)) and that they can be fooled quite easily with so-called adversarial examples, which
introduce a small perturbation to the input data *imperceptible’ to the human eye. For example, in
the domain of offensive language detection, we can have an offensive text on input and modify it
in such a way that the meaning is preserved, but the modified text will fool the system to classify
it as non-offensive (Jin et al., |2020). A similar scenario is illustrated in Figure|l|in the domain of
sentiment analysis of movie reviews.

Although adversarial examples can be perceived as a threat, they also help us identify and under-
stand potential weaknesses in language models and therefore contribute to the defense system, threat
prevention, and decision making of the models just as well (Ribeiro et al.,[2018)). Furthermore, when
attacks are included in training data, the general robustness of the model and its ability to generalize
can be improved (Goodfellow et al.,|2014; |Zhao et al.,|2018)).

Regarding the imperceptibility of adversarial attacks, it is easily definable in a continuous space, in
domains like audio or vision. In computer vision, imperceptibility is a certain pixel distance between
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the original image and its perturbed version (Chakraborty et al.| 2021). However, this term is much
more difficult to grasp in discrete domains such as text, where there is no clear analogy and where an
indistinguishable modification simply cannot exist. This is why several definitions of a successful
adversarial example have been developed that are specific to discrete domains such as text (Zhang
et al.l [2020b).

According to (Jin et al.| [2020) we can identify three main requirements for an adversarial attack on
text to be successful:
1. Human Prediction Consistency: The prediction made by humans should remain unchanged.

2. Semantic similarity: The designed example should have the same meaning as the source as
judged by humans.

3. Language fluency: The generated examples should look natural and grammatical.

We can observe a similar constraint definition in (Morris et al., 2020a), with the addition of the
“overlap” constraint that focuses on character-level changes.
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Figure 1: The typical adversarial example pipeline for a sentiment classification task. The attacked
classifier was trained to distinguish between positive and negative movie reviews. The semantic
similarity metric is based on our Semantics-Preserving-Encoder (SPE), which embeds sentences
using an array of supervised classifiers. In this example, substituting two words simultaneously
fools the model into changing its prediction and passes the semantic similarity test.

Although most adversarial attacks claim to meet these constraints (Gao et al., 2018} |Li et al.| [2021bj
Garg & Ramakrishnan, 2020), careful scrutiny shows otherwise. We observed that many adversarial
examples do not preserve the meaning of the text in some cases. This is also supported by (Morris
et al.,|2020a)) whose findings are similar. To overcome this problem, (Morris et al.,|2020a) suggested
increasing cosine thresholds and introducing mechanisms such as grammar checks to improve the
quality of adversarial examples. However, it is at the cost of the attack success rate, which decreased
rapidly by more than 70%. We suggest a different solution that promises to avoid this decline in the
attack success rate.

It appears that the problem lies in the similarity metric itself, whose function is to measure the
difference between the original and perturbed sentences. These metrics mostly use encoders that
are trained with limited supervision. This makes them more susceptible to problems with antonym
recognition. Because the antonyms are used in a similar context in the training data, the encoder
assumes that they are alike. As a result, sentences such as 'This movie is so good’ and *This movie
is so bad’ are considered similar in this case, as illustrated in the third column of Table |Il

Building on these findings, we propose a new sentence encoder for similarity metrics in textual
adversarial attacks called Semantics-Preserving-Encoder (SPE). SPE is trained with full supervision
on annotated datasets. Thus, it should be more robust towards the antonym recognition problems
that we observed frequently in adversarial examples.

These premises were proven to be valid throughout the experiments, where we compared our solu-
tion to some of the most common similarity metrics used in adversarial attacks. The results show
that our solution largely reduces the occurrence of text meaning modification and also significantly
improves the overall quality of the adversarial examples generated, as confirmed by human evalu-



ators. Furthermore, our solution — SPE can be integrated into any existing adversarial attack as a
component granting a much faster execution and comparable attack success rate.

In summary, we consider our main contributions to be as follows:

1. We propose a simple, but powerful sentence encoder — SPE, which improves the overall
quality of adversarial examples (minimizes text meaning modification and antonym recog-
nition problem). SPE can also be used as a component in any existing attack to speed its
execution while maintaining a similar attack success rate.

2. We propose a new metric for evaluating the quality of the adversarial examples — rASR,
which reflects the real performance of adversarial attacks.

3. We evaluate some of the most common sentence encoders used in adversarial attacks both
manually and automatically on relevant datasets such as hate-speech and offensive language
detection (Barbieri et al. 2020), in addition to other popular classification tasks such as
Yelp Reviews (Zhang et al.,[2015)) and Rotten Tomatoes (Pang & Leel |[2005).

4. We release our work as open source, including the code, human evaluations, datasets, and
test samples for the purpose of reproducibility and future benchmarking.

2 RELATED WORK

Textual adversarial attacks. There were many attempts to create textual adversarial attacks that
preserve semantics and are grammatically correct. Ultimately, we can distinguish between three
different ways in which other researchers approach this. The first approach aims to modify the whole
sentence using various sophisticated phrase perturbations, such as paraphrasing (Gan & Ng, [2019;
Wang et al., 2020). However, these modifications often have problems with semantic preservation
(Zhang et al.| [2020b).

The second approach focuses on character-level modification, such as misspellings or typos, which
has proven to be more successful in terms of semantics preservation (He et al.,[2021; Li et al.,2019;
Ebrahimi et al., 2018)). However, research shows that these types of attacks can be mitigated quite
easily with tools such as grammar checks (Pruthi et al., 2019; Jones et al., [ 2020).

Lastly, the word-level attack technique focuses on the substitution or modification of a single word
(or combination of multiple words) in the text (Alzantot et al.,|2018} |Ren et al.l [2019; Dong et al.,
20215 L1 et al.,[2021a)). This type of attack aims to preserve the constraints defined by (Morris et al.}
2020b), often using methods such as synonym substitution to improve semantic preservation.

Similarity metrics. The majority of word-level adversarial attacks enforce semantics similarity by
using Universal-Sentence-Encoder (USE) (Cer et al., [2018) or BERTScore (Zhang et al., [2020a)
encoders, both of which are trained mainly on unsupervised tasks. USE is trained on a task such as
Skip-Thought (Kiros et al.,[2015)), a conversational input-response task (Henderson et al.,|2017) and
a supervised classification task performed on the SNLI dataset (Bowman et al.,[2015)). BERTScore
is based on a pre-trained BERT language model (Devlin et al., 2018), which was also trained unsu-
pervisedly on the Next Sentence Prediction and Masked LM tasks.

Even though these sentence encoders have been thoroughly studied on various general tasks, only a
few previous works acknowledge their flaws when used in adversarial attacks (Morris et al.,[2020bj
Herel, [2022)). In most cases, these encoders struggle to recognize changes in the text’s meaning and
semantics. To overcome this, (Morris et al., 2020b) increased the cosine threshold, resulting in an
improved quality of adversarial examples, but over 70% decline in the attack success rate.

Looking at the big picture of the observed problems, we have discovered a potential link to the en-
coder training process. We show that the unsupervised training predetermines these encoders to have
problems with antonym recognition, which leads us to introduce our own Semantics-Preserving-
Encoder.



3 METHOD

In order to fully grasp the idea and motivation behind our sentence encoder — Semantics-Preserving-
Encoder, we formulate the textual adversarial attack problem in the following section. Next, we
formally introduce SPE, together with its classifiers and other properties.

3.1 PROBLEM FORMULATION

Most similarity metrics in adversarial attacks rely on sentence encoders such as USE (Cer et al.,
2018) or BERTScore (Zhang et all 2020a)). These encoders use multi-task learning with a high
emphasis on unsupervised tasks. The BERT language model (Devlin et al.l 2018) uses Masked-
Language Modeling. USE is trained on Skip-Thought (Kiros et al.| 2015)) like task, where the goal
is to predict the middle sentence based on the given context. Both of these training methods could
be seen as a variation of a Skip-Gram/CBOW model (Mikolov et al., [2013)), where the goal is to
predict the context of a given target word, and vice versa for CBOW. However, this training method
forces synonyms to be mapped into a similar vector space as antonyms, as they appear in the same
context. Therefore, two contradictory sentences in their vector representation could be very close to
each other in the vector space despite their opposite meaning. That is if the unsupervised training
with Skip-Gram or CBOW like tasks is used. This is the case for both BERT and USE.

A typical example of this problem is shown in Table|l] In this example, we used USE to encode
the sentences into the vector space and then measured the cosine similarity. The major flaw of the
encoder can be observed immediately. Sentences with totally opposite meanings, ~This movie is so
good” and "This movie is so bad”, are closer to each other than sentences with almost the same
meaning, ”This movie is so good” and “This movie is so tasty”.

3.2 SEMANTICS-PRESERVING-ENCODER

The core idea of our encoder lies in supervised training. We took advantage of the existing pre-
labeled datasets and utilized them in the training data to tackle the problem with opposite words
appearing in the same context. As a result, the words that are the most discriminative for the given
label will be close to each other in the vector space. Thus, the sentences mentioned above 'This
movie is so good’ and 'This movie is so bad’ should never be close to each other in the vector space,
because their semantics label will be exactly opposite.

We have combined multiple classifiers trained on different annotated datasets, which allows us to
have a diverse set of different sentence vectors. The sentence vectors will differ because each clas-
sifier produces its vector according to the task on which it was trained. Therefore, the diversity of
classifiers implies a diverse set of sentence vectors. Moreover, by combining several sentence em-
beddings from different classifiers, we can create a robust classifier that can produce a high-quality
embedding for a broad range of topics.

From a sentence S, an attack will generate a candidate adversarial example S*. We denote the
N supervised classifiers by C7,C5,...,Cy. For simplicity, we consider these classifiers to be
functions whose outputs are the sentence embeddings extracted from the classifier when applied to
a sentence. Formally, for all k, C(S) = e, € RP where p is the embedding dimension. The
complete embedding of a sentence is obtained by averaging the output of the classifiers into a single
embedding vector.

1 1 N (S)
e E kS E ek .
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The similarity between the original sentence S and the attacked sentence S* is computed with the
cosine distance between their embeddings as follows

(5) . e(57)
el® e
Slm S, S* - * )
55 = e
where - represents the dot product between vectors in R? and || - || is the L norm in RP. For a

threshold ¢, S and S* will be considered to have the same meaning if Sim(S, S*) > e.



The classification model that we used is fastText (Joulin et al., 2016). However, it is important to
note that any other classification model can be used instead. We decided to use fastText due to its
many advantages. Firstly, fastText classifiers allow us to create sentence vectors rather quickly with
a reasonable performance for the given task. Secondly, we can reduce the dimensionality of the
vector space. This way we can put more information into fewer dimensions, which results in a more
efficient space storage.

The classifier selection and training process are key to achieving a robust solution with high-quality
results. We begin to train classifiers on Natural Language Inference (NLI) datasets like SNLI (Bow-
man et al 2015)), cola, rte and sst2 (Wang et al., [2018), to help SPE eliminate the problem with
out of vocabulary words. We have further extended this selection with classifiers trained on more
downstream tasks such as emotion classification CARER, Yelp reviews and Stack Overflow ques-
tions classification (Saravia et al., [2018; Zhang et al.l |2015; /Annamoradnejad et al 2022)). This
should help our approach to map words with a different meaning to different vectors. However, it is
possible that for other purposes than adversarial attacks, a more optimal set of classifiers could be
found. We then took the sentence embeddings from each classifier and averaged them into one. This
process is illustrated in Figure 2] More details about the selection of classifiers and the averaging
method can be seen in Appendix
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Figure 2: Model architecture for SPE. For the given input, each classifier creates the sentence em-
bedding. These sentence vectors with the same dimension are averaged to produce the final sentence
vector.

Furthermore, we show that our approach can better distinguish between a text with opposite and
similar meanings than others that use limited supervision. This is illustrated on the previously re-
marked example in Table[T] where SPE achieves a much larger difference in cosine similarity, which
is much more indicative of the real meaning of the sentence.

. . Cosine similarit Cosine similarit
Original sentence ‘ Perturbed sentence ‘ y y

(USE) (SPE, ours)

This movie is so good | This movie is so bad | 0.90 0.63
This movie is so good | This movie is so tasty | 0.89 0.95

Table 1: Our approach, SPE, is able to better distinguish between the sentences with similar and
opposite meaning than sentence encoders trained with mostly unsupervised methods like USE (Cer
et al.,|2018)). Texts in the table were transformed into latent space by sentence encoders and then the
cosine similarity was measured. Sentences with an almost identical meaning should have a higher
cosine similarity than sentences with an opposite meaning. This is the case for our approach — SPE.

As mentioned above, the use of fastText classifiers allows us to achieve a reduced real-time com-
plexity of SPE compared to USE (Cer et al., 2018)) or BERTScore (Zhang et al.l2020a). SPE only
needs to perform 7 matrix multiplication operations (because we implement 7 fastText classifiers)
with small matrices due to the classifiers hidden layer dimension equal to 10. This is a marginal



difference compared to the computations executed by USE (Cer et al [2018), which performs the
operations with 512-dimensional vectors and, therefore, very large matrices. The final time com-
plexity to compute the sentence representation using SPE is defined as follows:

7
O:ZV*HZ- (1)
=1

where V is the length of the sentence and H; is the size of the hidden layer for i-th classifier.

As the next logical step after the implementation of SPE, we wanted to apply our text encoder in
similarity metrics. Generally, the role of an encoder in a similarity metric is to transform the given
text into a corresponding vector in the latent space, which is then used to evaluate the similarity.
Specifically, cosine similarity is measured between the vectors of the original text and the perturbed
text. If the cosine similarity reaches a certain preset threshold €, an adversarial example is considered
successful.

Therefore, for our metric, the general cosine threshold also had to be defined. Ideally, it should be
set so that consistent results for any domain are produced. Our experiments empirically show that
setting ¢ to 0.95 performs consistently well across different datasets, which is the reason we chose
it for our similarity metrics.

4 EXPERIMENTS

To evaluate our proposed sentence encoder in real attack use cases, we performed some automatic
and human-based manual evaluation. As explained in Section [I] the commonly used attack success
rate is fundamentally flawed and is not enough to measure the success of an adversarial attack.
The metric only gives a partial view of the real capability of an attack, obscuring the quality of
the semantic similarity constraint on the generated sentences. For this reason, we conducted an
extensive survey to collect human evaluations of the quality of the attacks generated, which allows
us to evaluate the semantic similarity constraint.

The main goal of our experiments is to study the impact of SPE when used as a semantic similarity
constraint in adversarial attacks. If this constraint is too strict, only a few high-quality sentences
would be accepted as successful attacks, potentially missing many good candidates. Inversely, too
loose a constraint would produce many low-quality examples. We focus our experiments on two
widely used attacks: TextFooler (Jin et al.l |2020) and its improved version TFAdjusted (Morris
et al., 2020b). To understand the effect of SPE in existing attacks, we use it as a constraint, together
with two other state-of-the-art semantic similarity metrics, the Universal Sentence Encoder (USE)
(Cer et al.,[2018)) and BERTScore (Zhang et al., | 2020a), totaling six attack/sentence encoder pairs.

4.1 AUTOMATIC EVALUATION
We automatically evaluate adversarial attacks using three metrics:

Attack success rate (ASR). The percentage of successful adversarial examples found by an attack.
Given a sentence classifier, a successful adversarial example means that the attack gener-
ated a sentence similar to the original that is assigned a different label by this classifier. A
higher success rate means that more generated sentences are assigned a different label.

Time. Average time needed to create an adversarial example. Attacks may rely on various search
techniques to generate candidate sentences, leading to varied generation times.

Modification rate. The percentage of modified words. To be as imperceptible as possible, attacks
should use as few edits as possible.

4.2 HUMAN EVALUATION

Using automatic evaluation, such as the attack success rate, adversarial attacks are considered suc-
cessful if they simultaneously pass a semantic similarity threshold and manage to change the label
of a classifier. Measurement of semantic similarity between sentences is still an open research prob-
lem with no commonly accepted solution. In some cases, even humans disagree on whether two



sentences are similar or not. For this reason, we include an extra evaluation step in our experiments
to obtain more robust results. Sentence pairs were presented to 5 annotators who assigned them an
integer score between 1 and 4, where score 1 means strongly disagree, 2 disagree, 3 agree and 4
strongly agree. The higher the score, the more similar the meaning of a pair of sentences will be
according to the annotator. Each annotator was given the sentences to label in several online forms.
We averaged the scores of all the annotators into a single value for each sentence. Sentences were
assigned a binary label; those with an average score greater than or equal to 2.5 are considered sim-
ilar, while the others are labeled as not similar. Because the original score system is not binary, the
threshold was chosen exactly in the middle of these values. Experimentally, we have determined
that the exclusion of the equality to 2.5 does not have any noticeable impact on the results.

Based on this evaluation, we estimate a realistic success rate of the attack — or an estimated “real
ASR” (rASR). This number represents the number of successful attacks that would actually fool the
reader into thinking that they have the same meaning as the original sentence but have a different
label assigned by the classifier. This score, although costly to estimate, gives a very accurate measure
of the quality of an attack. A perfect attack would reach a high ASR and a very similar rASR
(ASR ~ rASR), which means that it successfully fooled the target classifier repeatedly and that all
the corresponding attacked sentences also conserve the same meaning as the original ones in the
eyes of human annotators.

4.3 DATASETS

We evaluated the performance of SPE-based attacks and compared them with existing state-of-
the-art attacks on four text classification datasets that correspond to various potential applications
of adversarial attacks from NLP, such as data augmentation or detection of hateful and offensive
speech. Figure [3] shows the average number of words in each of the datasets studied. All source
code, links to the datasets, and trained models can be found on Github. We did not include sentence
similarity benchmarks such as MRPC (Dolan & Brockett, [2005) because they do not contain the
types of sentences that occur in adversarial examples. Therefore, they would not be relevant for our
context.

Offensive tweets. This dataset is from the TweetEval set of seven multiclass tweet classification
tasks (Barbieri et al, 2020) . The tasks are labeled irony, hate, offensive, stance, emoji, emotion,
and sentiment. The offensive task consists of classifying tweets as offensive or non-offensive. We
used a subset of 1000 sentences from the training split of the dataset for our attacks. This dataset
is particularly interesting in the context of adversarial attacks on text because it is based on real
harmful content that can be encountered online. Having the ability to correctly recognize and filter
these harmful content is a crucial task for many social networks. Adversarial attacks demonstrate
potential flaws in the classifiers used to detect this harmful content, but also offer a tool to improve
them.

The attacked model is a roBERTa-based (Liu et al., 2019)
model trained on 58M tweets and fine-tuned for offensive lan-
guage identification with the TweetEval benchmark (Barbieri

et al., [2020).
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Rotten tomatoes. The rotten tomatoes dataset is a movie review dataset with 5,331 positive and
5,331 negative processed sentences from Rotten Tomatoes movie reviews (Pang & Leel 2005). We
used a subset of 1000 sentences from the training split of the dataset for our attack.

The attacked model is the uncased base DistilBERT (Sanh et al., 2020) model fine-tuned on the
rotten tomatoes dataset.

Yelp reviews. The Yelp review data set is a data set for binary sentiment classification (Zhang
et al.}2015). It contains a set of 560000 highly polar yelp reviews for training and 38000 for testing.
It consists of Yelp reviews extracted from the 2015 Yelp Challenge data.

The attacked model is a roBERTa (Liu et al., 2019) model fine-tuned on binary sentiment classifca-
tion from Yelp polarity.

5 RESULTS

(a) Offensive tweets (b) Hate speech tweets
Attack | ASR?T | rASR? | Time| | Mod. rate ASR?T | rASR? | Time| | Mod. rate
TextFooler+SPE (ours) 683 30.7 (100) | 1.559 16.8 65.6 45.9 (100) | 1.865 193
TextFooler+USE 754 204 (100) | 1.749 174 69.1 27.0(100) | 2.111 209
TextFooler+BERTScore | 64.2 18.6 (100) | 1.955 19.5 65.8 375(100) | 2274 | 207
TFAdjusted+SPE (ours) | 11.7 9.1 (100) 1.054 10.6 10.8 9.8 (97) 1.044 12.4
TFAdjusted+USE 1.0 - 0865 | 9.1 26 2.4(23) 0.771 9.7
TFAdjusted+BERTScore | 5.4 5.4(47) 1.167 10.4 57 57(51) 1.187 143

(c) Rotten tomatoes (d) Yelp reviews
Attack | ASR?T | rASR? | Time| | Mod. rate ASRT | rASRT | Time| | Mod. rate
TextFooler+SPE (ours) 89.0 61.4 (100) | 0.746 12.8 87.4 36.7(100) | 14792 | 102
TextFooler+USE 96.4 41.5(100) | 0.824 132 90.5 7.2 (100) 13.874 | 106
TextFooler+BERTScore | 92.7 38.9(100) | 0.986 139 89.8 7.2 (100) 16.176 | 115
TFAdjusted+SPE (ours) | 12.6 11.8(100) | 0.774 124 82 4.5 (81) 36921 | 106
TFAdjusted+USE 03 - 0513 | 96 03 - 22325 | 12
TFAdjusted+BERTScore | 5.7 5.1(57) 0.993 142 23 1.5(23) 32946 | 57

Table 2: ASR is the attack success rate (in %), rASR is the estimated real attack success rate obtained
from the human survey (in %), the time per sentence is in seconds and the modification rate is
the average fraction of words changed per sentence (in %). An upward arrow (1) indicates that
higher is better. All numbers but the estimated rASR were computed on 1000 instances. For the
estimated rASR, we report the number of annotated examples in parentheses. For some of the results
with TFAdjusted + USE/BERTScore the ASR is so low that few sentences could be submitted for
annotation, and the rASR estimates are unconclusive. We omitted rASR values for configurations
with less than 10 successful attacks out of 1000 attempts.

The results of our experiments with the six attacks on the four datasets are shown in Table[2] We ob-
serve that SPE surpasses other alternatives by a large margin in all configurations, with an estimated
real attack success rate (rASR) more than 20% higher than USE or BERTScore with TextFooler and
more than 3 percentage points higher with TFAdjusted.

As expected, TextFooler-based attacks have a high ASR, reaching 90% and more while attacking
the rotten tomatoes dataset for example. But they also have a steep drop from ASR to rASR; for
example, TextFooler+USE has its ASR decrease from 96% to a rASR of 41%, indicating that many
of the supposedly successful attacks actually do not have the same meaning according to human
annotators. This is due to the weakness of the semantic similarity constraints, as they do not filter
out low-quality examples. This can be an issue in practical applications, since the attacked sentence
could easily be detected by humans. For all four datasets, this drop is minimal when using SPE as a
constraint.

TFAdjusted receives lower ASR scores than TextFooler (no ASR greater than 12%), but the drop
between ASR and rASR is low compared to TextFooler, with a maximum drop of 2.4% for TFAd-
justed+SPE on the offensive tweets dataset. It shows that the sentences generated by the TFAdjusted



attack are of high quality, which is confirmed by the annotators. This is in agreement with the ob-
servations of (Morris et al., 2020b) who proposed TFAdjusted to improve the output quality of the
TextFooler attack. The quality increase is obtained at the expense of the ASR, which can be consid-
erably lower. For example, TFAdjusted with USE obtains ASR scores lower than 3% on all datasets,
making it barely usable as an attack, since it generates less than 25 usable sentences out of a 1000
attacked sentences. The ASR of SPE is higher than the other constraints, which can be interpreted
as SPE being less strict. Yet, our encoder still has remarkably low drops from ASR to rASR, and
surpasses both other solutions in all examples in terms of rASR. This indicates a better ability to
generate successful attacks that maintain the original meaning of sentences.

To give a better understanding of the final adversarial examples and the labels given by human
annotators, we included several illustrative examples from the Rotten Tomatoes dataset and the
TextFooler attack in Table[3] A more diverse set of examples is available in Section[A4]

Average

Original sentence Perturbed sentence human Encoder
label (1)

“an impressive if flawed effort | “an wondrous if flawed effort 36 SPE

that indicates real talent.” that indicates real talent.” ’

“an original gem about an ob- | “an original topaz about an ob- 1.6

session with time.” session with jours.” ’

v . . ”it sounds sick and mad-

it sounds sick and twisted, but woman, but the miracle of

the miracle of shainberg’s film L . 1.4 BERTScore

. . . . shainberg’s cameraman is that

is that it truly is romance . ; ”

it awfully is romance

“one of the greatest family- | "one of the worst family-

oriented,  fantasy-adventure | oriented,  fantasy-adventure | 1.25 USE

movies ever.” cinemas ever.”

Table 3: Adversarial examples produced during our experiments for the Rotten Tomatoes dataset
and TextFooler attack with the average human label. An upward arrow (1) indicates that higher is
better. In all of these examples, the semantic similarity metric — which is based on the encoder —
found the perturbed sentences to be sufficiently similar to the originals.

6 CONCLUSION

Our results show that existing state-of-the-art adversarial attacks produce examples that often do not
sufficiently retain meaning and therefore should not be considered successful. We confirmed this
by conducting an extensive human survey, showing, for example, that up to 70% of the sentences
generated by an attack should be discarded because they do not preserve their original meaning. Al-
though increasing the semantic similarity threshold may improve the quality of examples as (Morris
et al.| 2020a)) claims, it also leads to a lower attack success rate and attacks with limited applicabil-
ity. The issue lies in the similarity metric used to constrain the generation of sentences in the attacks
we tested. Existing similarity metrics are based on models trained in an unsupervised way and thus
suffer from several issues, such as antonym disambiguation in the sentence latent space. We tackled
this by developing the Semantics-Preserving Encoder, which uses word embeddings extracted from
supervised models to improve the semantic similarity metric of adversarial attacks. We obtained a
much higher success rate on various datasets with the SPE, and human evaluation showed that the
generated sentences can reliably fool humans into thinking that they have the same meaning as the
original.

We expect future adversarial attacks to still rely on a semantic similarity metric, which is essential for
generating candidate sentences with similar meanings. SPE being usable as a drop-in replacement
for these metrics, it is not tied to a particular attack algorithm. SPE can be useful for improving
any existing attack and will still be usable with future attacks. While SPE as presented in this paper
is based on pre-trained fastText classifiers, it should be straightforward to extend this idea to large



pre-trained language models. That should result in even higher accuracy of the attacks, at the cost
of greater computational complexity. This kind of extensions could be achieved simply by fine-
tuning the language models on classification tasks, where, e.g. sentiment is of high importance.
Future work could explore the choice of embeddings used in SPE and the potential improvements
that could result from choosing different models and supervised and semi-supervised embedding
techniques.

Online communication is still conducted primarily through text. Social networks and messaging
platforms must process large amounts of user-generated text to prevent dangerous or harmful content
from being spread or targeted at specific individuals. In this context, textual adversarial attacks are
a crucial tool for understanding the shortcomings of existing content filtering models and improving
them. Better adversarial attacks mean even better models, and SPE is a step towards building higher-
quality attacks, which will continue to highlight issues with our machine learning models and help
us train them better.
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A APPENDIX

A.1 CLASSIFIER SELECTION

There were numerous experiments performed regarding the classifiers selection. The most relevant
experiments were performed on the Morris dataset (Morris et al.,[2020b). This dataset contains 400
sentence pairs, where each pair is labeled by human annotators whether it preserves the meaning.

From the Figure |4| we can observe that using just 7 classifiers works the best and then the accuracy
drops significantly. These classifiers were trained on Natural Language Inference (NLI) datasets like
SNLI (Bowman et al., [2015)), cola, rte and sst2 (Wang et al., 2018)), and on more downstream tasks
such as emotion classification CARER, Yelp reviews and Stack Overflow questions classification
(Saravia et al.l 2018} [Zhang et al., 2015} |]Annamoradnejad et al.,2022).

We have also experimented with concatenation of embeddings, however empirical results show that
averaging works the best.

A.2 CLASSIFIER TRAINING

In this section, the hyper-parameters of the fastText models (Joulin et al., [2016)) that we use in
SPE will be specified. FastText models, despite their complexity, are conceptually simple. They
employ basic logistic regression and include many hyper-parameters that allow us to adjust the
model to our use case (Joulin et al., 2016). Some of the most important hyper-parameters are learning
rate, dimensionality of vectors, loss function, and number of epochs. Other parameters such as the
minimum and maximum length of char n-grams, word n-grams, number of buckets, minimal and
maximal word and label occurrences can be also chosen (Joulin et al., 2016).
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Figure 4: The graph shows how the number of classifiers influences the accuracy of SPE on the

Morris dataset (Morris et al., [2020b))

In our implementation, most of these hyper-parameters are left with their default value (Joulin et al.}

2016). The hyper-parameters which we have found important to modify are:

. epoch - number of epochs

. Ir - learning rate

. dim - hidden layer dimensionality (size of the word/sentence vectors)

. minn - minimum length of char n-gram
. maxnn - maximum length of char n-gram
. loss - loss function used

1
2
3
4. wordNgrams - maximum length of word n-grams
5
6
7

For the dimensionality of the hidden layer, we have chosen the value 10, which corresponds to the
value in the original fastText paper (Joulin et al., 2016)). In comparison with the value 512 of USE
(Cer et al.L|2018), this number is very small, yet we are able to concentrate far more information into
just 10 dimensions while achieving SOTA results on classification problems. For the loss function,
we use a simple softmax function because our classification problem only has a few classes.

The remaining hyper-parameters were fine-tuned for our use case, which can be done with an auto-
matic tool integrated into the fastText (Joulin et al.| [2016) library that finds the best values for the
given task for us. The complete list of these hyper-parameters for each classifier is shown in Table

4

Classifier epoch Ir minn maxnn wordNgrams
SNLI 5 0.05 3 6 4

COLA 1 0.09 0 0 5

RTE 11 0.09 6 3 1

SST2 55 0.04 6 3 5
StackOverflow 23 0.05 6 3 5

Emotion 6 0.073 6 2 3

Yelp Review

Polarity 5 0.05 0 0 2

Table 4: Hyper-parameters of the fastText classifiers (Joulin et al., |2016) used in our Semantics-

Preserving-Encoder.

Another advantage of the fastText library (Joulin et al.l [2016) is the possibility to specify the size
of the model. Size compression is achieved using a quantization method, which is very effective.



For example, if we take a 409MB classifier with 0.957 accuracy rate in the Amazon Review Polarity
dataset (Zhang et al.,|2015)), we are able to reduce it to 1.5MB while maintaining the same accuracy
rate.

Similarly, in our SPE where 7 classifiers are integrated, if each classifier had over 400MB in size,
it would make it very difficult to work with the metric that implements it. Quantization solves this
issue for us and helps us tremendously. Finally, we decided to limit our model size to 2MB.

A.3 CLASSIFIER RESULTS

Our metric uses Semantics-Preserving-Encoder, which implements a set of fastText classifiers
(Joulin et al., |2016). These were trained on seven datasets with the hyper-parameters stated pre-
viously. Each dataset consists of training and testing subsets, which allows us to test the classifiers
on the dataset once the training stage is finished. The final accuracy rate obtained on the testing
subset of each dataset is presented in Table[5]

Classifier Test accuracy rate T
SNLI 0.595
COLA 0.686
RTE 0.563
SST2 0.829
StackOverflow 0.891
Emotion 0.898
Yelp Review Polarity | 0.957

Table 5: Accuracy rate of the fastText classifiers used in SPE on the test set for each dataset.

Based on the results in Table[d] we can conclude that better results are achieved on datasets that are
more down-stream, such as Emotion, Yelp Review Polarity, or Stack Overflow, where the training
was very successful in terms of accuracy.

However, more general tasks such as NLI resulted in a much lower accuracy rate. My explanation is
that these problems are very abstract and require a deep language understanding, which we are still
unable to reproduce artificially at this point. But overall, even on the less successful tasks, our accu-
racy is very reasonable. Especially given the fact that we have 3 labels - entailment, contradiction,
and neutral, we are still more than two times better than a random classifier.

A.4 ADVERSARIAL ATTACKS EXAMPLES

We would like to show few examples of textual adversarial attacks with different sentence encoders.
Utilizing the information from the human judges, we show one of the best rated and the worst rated
ones for each sentence encoder in TextFooler (Jin et al., 2020). Sentence pairs were presented to 5
annotators who assigned them an integer score between 1 and 4, where score 1 strongly disagree, 2
disagree, 3 agree and 4 strongly agree. Only examples from the Rotten Tomatoes dataset (Pang &
Leel [2005) are shown. The Yelp Reviews dataset (Zhang et al., |2015) contains too long pieces of
text and hate/offensive tweets dataset (Saravia et al., 2018) is not suitable for the paper due to it’s
negative nature. However examples of these datasets could be seen in our materials. We released
our work as open-source including the human evaluations.
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TextFooler - SPE - Rotten Tomatoes

Average
Original sentence Perturbed sentence human
label (1)
“for its seriousness , high literary as- | for its seriousness , high literary as-
pirations and stunning acting , the film | pirations and stun acting , the film can | 3.8
can only be applauded .” only be applauded .”
e . ’it’s one of the saddest films i have
it’s one of the saddest films i have f . f
. ever seen that still manages to be up-
ever seen that still manages to be up- | ;... . . 3.8
s ; o lifting but not exceedingly sentimental
lifting but not overly sentimental . I
it sounds sick and twisted , but the | it sound sicko and madwoman , but
miracle of shainberg’s film is that it | the marvels of shainberg’s cameraman | 1.6
truly is romance” is that it exactly is romance”
”an original gem about an obsession | “an original topaz about an obsession 1.6
with time .” with jours .” ’

TextFooler - BERTScore - Rotten Tomatoes

Table 6: Adversarial examples for TextFoolder - SPE - Rotten Tomatoes dataset with the average
human label. An upward arrow (1) indicates that higher is better.

Average
Original sentence Perturbed sentence human
label (1)
“just another fish-out-of-water story | "just another fish-out-of-water story 36
that barely stays afloat.” that barely maintains afloat.” ’
“whether you’re moved and love it, or | “whether you’re moved and love it , or
bored or frustrated by the film , you’ll | bored or frustrated by the film , you’ll | 3.4
still feel something .” anyway feel something .”
“has it ever been possible to say that | "has it ever been possible to say that
williams has truly inhabited a charac- | williams gets awfully inhabited a fea- | 1.4
ter ? it is now.” turing ? it is now.”
“elling really is about a couple of | elling altogether is about a couple of
crazy guys , and it’s therapeutic to | lunatic boyfriend, and it’s therapeutic | 1.4
laugh along with them .” to laughing along with them .”

Table 7: Adversarial examples for TextFoolder - BERTScore - Rotten Tomatoes dataset with the
average human label. An upward arrow (1) indicates that higher is better.
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TextFooler - USE - Rotten Tomatoes

Average
Original sentence Perturbed sentence human
label (1)
“a worthy entry into a very difficult | “a reputable entry into a very difficult 35
genre.” genre.” ’
’it’s a nicely detailed world of pawns , | ”it’s a mildly detailed world of pawns ,
bishops and kings , of wagers in dingy | bishops and kings , of wagers in dingy | 3.25
backrooms or pristine forests .” backrooms or pristine forests .”
“one of the greatest family-oriented , | “one of the worst family-oriented , 1.5
fantasy-adventure movies ever.” Jfantasy-adventure cinemas ever.” ’
“an enjoyable film for the family , | "an contented scorsese for the
amusing and cute for both adults and | dwelling , goofy and leggy for both | 1.0
kids .” grownup and infantile .”

TFAdjusted - SPE - Rotten Tomatoes

Table 8: Adversarial examples for TextFoolder - USE - Rotten Tomatoes dataset with the average
human label. An upward arrow (1) indicates that higher is better.

Average
Original sentence Perturbed sentence human
label (1)
“the story feels more like a serious | “the story feels more like a serious
read , filled with heavy doses of always | read , filled with heavy dosage of al- | 3.8
enticing sayles dialogue .” ways enticing sayles dialogue .”
”lathan and diggs have considerable lathan and diggs have cons'tderable
. personal glamour , and their screen
personal charm , and their screen rap- rapport makes the old story seem new 3.6
port makes the old story seem new .” app 4
7 girls gone wild and gone civil again” glr.ls” gone wild andfaded civil 2.6
again
“has a shambling charm . . . a cheer- | “has a shambling charm . . . a blithely 29
fully inconsequential diversion .” trivial diversions .” ’

Table 9: Adversarial examples for TFAdjusted - SPE - Rotten Tomatoes dataset with the average
human label. An upward arrow (1) indicates that higher is better.
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TFAdjusted - BERT - Rotten Tomatoes

Average
Original sentence Perturbed sentence human
label (1)
“the story feels more like a serious | “the story feels more like a serious
read , filled with heavy doses of always | read , filled with heavy dosages of al- | 3.6
enticing sayles dialogue .” ways enticing sayles dialogue .”
7”7 the emperor’s new clothes ” begins | 7 the emperor’s new clothing ” start
with a simple plan . . . . well , at least | with a simple plans . . . . well, at least | 3.4
that’s the plan .” that’s the plan .”
”it’s a minor comedy that tries to bal- | "it’s a marginal comedy that tries to
ance sweetness with coarseness , while | balance sweetness with coarseness |, 29
it paints a sad picture of the singles | while it painting a sorrowful photo of | =
scene.” the singles scene .”
“as a director , mr . ratliff wisely re- | “as a director , mr . ratliff prudently
Jjects the temptation to make fun of his | dismiss the temptation to make amus- | 2.2
subjects .” ing of his topic .”

TFAdjusted - USE - Rotten Tomatoes

Table 10: Adversarial examples for TFAdjusted - USE - Rotten Tomatoes dataset with the average
human label. An upward arrow (1) indicates that higher is better.

Average
Original sentence Perturbed sentence human
label (1)
”bubba ho-tep is a wonderful film with | “bubba ho-tep is a wondrous film with
a bravura lead performance by bruce | a bravura lead performance by bruce
campbell that doesn’t deserve to leave | campbell that doesn’t deserve to leav- | 3.6
the building until everyone is aware of | ing the building until everybody is
it.” aware of it.”
“the film has just enough of everything | “the movie has just enough of ev-
— re-enactments , archival footage , | erything — re-enactments , archival 30
talking-head interviews — and the mu- | footage, talking-head interviews —and | =
sic is simply sublime .” the music is merely sublime .”
“the film starts out as competent but | “lthe film starts out as competent but
unremarkable . and gradually | unremarkable . and gradually 30
grows into something of considerable | grows into anything of considerable ’
power.” power.”

Table 11: Adversarial examples for TFAdjusted - USE - Rotten Tomatoes dataset with the average
human label. An upward arrow (1) indicates that higher is better.
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