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Introduction

This report aims to present and explain the work I carried out during my part time
research internship between September 2016 and January 2017. I worked with PhD
candidate Tom Sperber in Sylvain Gigan’s group Optical imaging in biological and
complex media at Kastler-Brossel lab (LKB) of ENS. The group studies mainly optical
imaging through scattering media with state-of-the art techniques such as wavefront
shaping and transmission matrix measurement [10], [3].

Multimode Fibers are optical fibers with several possible guided modes of light
transmission. When light propagates through a Multimode Fiber (MMF), it couples
with all the possible guided modes of the fiber. Although they are not a scattering
medium, the modal dispersion phenomenon makes it difficult to practically understand
the signal’s behavior. Because of the slightly different propagation constant of each
mode, a dephasing appears between the mode components when the signal beam prop-
agates and after a certain distance it becomes deteriorated. For long scientists have
believed that the mixing inside the fiber was too complex to understand, but the ap-
parent randomness is only due to multiple dephasing between every modes and all the
mode combinations are linear. Transmission matrices measurements - the matrix rep-
resenting the mapping between input and output modes - along with wavefront shaping
- fine and dynamic modulation of the light field wavefront with spatial light modulators
(SLM) - have enabled physicists to entirely characterize light transmission in MMFs.
With a fiber’s transmission matrix, one can know which modes at the input correspond
to a particular output and use it to perform imaging or focusing for instance.

Multimode Fiber Amplifiers (MMFA) are MMF made of amplifying material that
can be excited by a pump beam. Because a pump beam propagates similarly to a
signal beam, as a superposition of guided modes of the fiber, the modal composition of
the pump is expected to mix non uniformly and have an influence on the Transmission
Matrix of the fiber. However, this influence is likely to be complex and hard to predict
. Being able to control this effect of the pump beam on the Transmission Matrix would
allow to cope with nonlinear effects that arise when using MMFs with high optical
intensities or to improve telecommunication applications of MMFs.

So far, the link between the modal composition of an amplifying pump and the
transmission matrix of a fiber hasn’t been investigated in depth. The strong influence
of perturbations of the pump on the transmission matrix has been observed but it
is not certain if this influence can be controlled and targeted to some specific matrix
configuration and if so, in what extent.

During my internship, I developed a numerical optimization tool that theoretically
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demonstrates significant maximization of some specific elements of the transmission
matrix, that is to say the amount of energy a specific mode will receive when in-
puting another given mode in the MMFA. The simulation is able to find an optimal
pump configuration for any given target transmission matrix. Minimization and near
extinction of the self-amplification component of some modes has been observed after
optimization, raising interesting questions about the possibility of controlling the pump
to achieve specific effects on the transmission matrix.

The report begins with a review of the theory of optical fibers and Multimode
fibers, and of the relation between the modal behavior of light in MMFs and their
Transmission Matrices. Then, the model used for calculating the Transmission Matrix
of a Multimode FIber Amplifier is described and its implementation and the challenges
the simulation posed are exposed. Finally, the results provided by the optimization
scheme are analyzed.
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Theory of optical fibers

1.1 Weakly-guiding step-index fibers

1.1.1 General description

Structure of an optical fiber

n1

n2

Core

Cladding

a

Figure 1.1 – Description of
the structure of an optical
fiber

A single step-index optical fiber consist of two homo-
geneous concentric dielectrics as shown on Figure 1.1.
The inner dielectric, referred to as the core, fills the re-
gion r < a and is of refractive index n1. The cladding
is the region corresponding to r > a, of refractive in-
dex n2, with n2 < n1 ; it is considered of infinite outer
radius for purpose of analysis (in practice, the ratio
between the two diameters depends on the the wave-
length application but falls between 1% and 0.2%).
Among the key structural parameters of a fiber are
the core radius a and the normalized index difference
∆, defined as follow :

∆ =
n2

1 − n2
2

2n2
1

(1.1)

The numerical aperture (NA) is also an important parameter of an optical fiber. It is
defined as the sine of the maximum angle of an incident light ray which has been totally
confined into the fiber. The expression of this quantity can be found by geometrical
means, using Snell-Descartes’ law on a 2-D restriction of the problem as described
Figure 1.2. On the figure, a ray with an incidence angle of θNA is refracted at the
interface air/fiber and is reflected at the interface between the core and the cladding if

and only if its incidence angle is greater than θc, with sin θc =
n2

n1

. Therefore, we find

that

NA = sin θNA =
1

n0

√
n2

1 − n2
2 =

n1

n0

√
2∆ (1.2)

The weakly-guiding approximation

In further analysis, we will consider that the fibers satisfy the weakly-guiding approxi-
mation. This approximation states that the two refractive indexes n1 and n2 are very

close in value from each other, that is to say ∆ =
n2

1 − n2
2

2n2
1

� 1.
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Figure 1.2 – Ray propagation for an input of incidence angle θNA in a 2-D
restriction of the fiber

This approximation is almost always true for commercial glass fibers, and it yields
a relatively small numerical aperture of the device.

For practical reasons further explained, optical fibers are classified into single-mode
fibers, which have values of ∆ typically around 0.2% and multimode fibers with ∆s of
the order of 1%.

In all the following, only step-index fibers will be studied. It has in many instances
been replaced by more specific and complicated profiles. Alternative profiles can have a
larger acceptable bandwidth, less dispersion for some wavelengths and enable to better
control polarization inside the fiber. Nonetheless, modes inside those fibers have the
same characteristics and general behavior, hence the focus on step-index fibers.

1.1.2 Field propagation in a fiber

Wave Equations for LP modes

Because of the reasoning based on a slab waveguide, explained in [2], the field solutions
are considered as being linearly polarized in the fiber transverse plane (the electric
field is designated as having an x polarization and the magnetic field as having a y
polarization). I can be shown that the magnitude of the z components of the field are
lower than those of the transverse plane by a factor of the order of

√
∆ and because

of the weakly-guiding approximation, we will neglige this part of the field. Therefore,
the fields components are written

E = Ex(r, ϕ, z)âx = Ex0(r, ϕ)e−iβzâx (1.3)

H = Hy(r, ϕ, z)ây = Hy0(r, ϕ)e−iβzây (1.4)

Rectangular components are assumed for the field and the wave equation is separable
into x and y components, and we have

∇2
tEx,core + (n2

1k
2
0 − β2)Ex,core = 0, r ≤ a (1.5)

∇2
tEx,clad + (n2

2k
2
0 − β2)Ex,clad = 0, r ≥ a (1.6)
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Where k0 = 2π/λ0 is the wave number in free space. The propagation constant β of any
mode is always limited in the interval n1k0 ≥ β ≥ n2k0 [2]. If we define the parameters

u = a(k2
0n

2
1 − β2)

1
2 (1.7)

w = a(β2 − k2
0n

2
2)

1
2 , (1.8)

we find for the wave equation in both regions,

∂2Ex,core
∂r2

+
1

r

∂Ex,core
∂r

+
1

r2

∂2Ex,core
∂ϕ2

+
u2

a2
Ex,clad = 0 (1.9)

∂2Ex,clad
∂r2

+
1

r

∂Ex,clad
∂r

+
1

r2

∂2Ex,clad
∂ϕ2

− w2

a2
Ex,clad = 0 (1.10)

Those equations are easily transposable to the magnetic field and the parameter v,
defined as

v2 = u2 + w2, (1.11)

v = ak0(n2
1 − n2

2)
1
2 (1.12)

can be interpreted as a normalized frequency. We assume the solution to be a discrete
series of modes with separate dependencies on r,ϕ and z in product form. The separate
dependencies on z correspond to separate propagation constants. Each of those modes
must itself be solution to (1.10):

Ex =
n∑
i=1

Ri(r)Φi(ϕ)e−jβiz (1.13)

A single mode can be substituted into (1.10) to obtain the following equations

r2

R

d2R

dr2
+
r

R

dR

dr
+ r2u

2

a2
= − 1

Φ

d2Φ

dϕ2
(1.14)

in the core and,

r2

R

d2R

dr2
+
r

R

dR

dr
− r2w

2

a2
= − 1

Φ

d2Φ

dϕ2
(1.15)

in the cladding.
The left hand-side of both equations depends only on r and their right hand-side

depends only on ϕ. Because r and ϕ vary independently, each side of (1.14) and (1.15)
must be equal to a constant, defined as `2. We can separate the two sides and write
for example in the core :

d2Φ

dϕ2
+ `2Φ = 0 (1.16)

d2R

dr2
+

1

R

dR

dr
+

[
u2

a2
− `2

r2

]
R = 0 (1.17)

7



Solutions of the wave equations

Equation (1.16) can readily be solved and it yields :

Φ(ϕ) =

{
cos(`ϕ+ α)

sin(`ϕ+ α)
(1.18)

where α is a constant. Because the field must be self-consistent over a 2π rotation of
ϕ, we have 2π` = 2kπ, with k integer, and ` must be an integer. For linearly polarized
modes, the parameter ` is called the angular (or azimuthal) mode number.

Equation (1.17) is a form of Bessel’s equation. It solution in term of Bessel functions
is [15],[14]

R(r) =


AJ`

(ur
a

)
+ A′Y`

(ur
a

)
, r ≤ a

BK`

(wr
a

)
+B′I`

(wr
a

)
, r > a

(1.19)

where J` and Y` are Bessel functions of the first and second kinds of order `, and K`

and I` are modified Bessel functions of the first and second kind of order `, which apply
because of the the factor −w2

a2 in (1.15). The behavior of the four functions is depicted
on Figure 1.3.

(a) Bessel function of the first
kind

(b) Bessel function of the second
kind

(c) Modified Bessel function of
the first kind

(d) Modified Bessel function of
the second kind

Figure 1.3 – Behavior of the four Bessel functions for several orders

Because the basic properties of a guided mode in a waveguide still apply in our
case, we expect the solution to be oscillatory, exhibiting no singularities in the core
and to monotonically decrease in the cladding. Therefore, A′ and B′ must be equal to
zero. Then, using the cos(ϕ`) dependency in (1.16) and setting α = 0, we obtain the
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complete solution for Ex :

Ex(r, ϕ, z) =


AJ`

(ur
a

)
cos(`ϕ) exp(−iβz), r ≤ a

BK`

(wr
a

)
cos(`ϕ) exp(−iβz), r > a

(1.20)

Similarly, we can solve the wave equation (1.4) for the magnetic field, leading to :

Hy(r, ϕ, z) =


CJ`

(ur
a

)
cos(`ϕ) exp(−iβz), r ≤ a

DK`

(wr
a

)
cos(`ϕ) exp(−iβz), r > a

(1.21)

With the quasi plane wave approximation introduced at the beginning of the anal-
ysis, we also have

A ≈ ηB and C ≈ ηD (1.22)

Boundary conditions

Applying the boundary conditions for the field at the core-cladding interface, we can
get an expression of the coefficients A, B and C, D in terms of a single quantity. For
the electric fields, the boundary conditions are expressed as follow

Eϕ1|r=a = Eϕ2|r=a (1.23)

n2
1 Er1|r=a = n2

2 Er2|r=a (1.24)

The weakly guiding approximation yields n1 ≈ n2. And because both normal and
tangential components of E are continuous across the interface, setting A = E0 and
using (1.20) we have the final expression for the electric field

Ex(r, ϕ, z) =


E0J`

(ur
a

)
cos(`ϕ) exp(−iβz), r ≤ a

E0 [J`(u)/K`(w)]K`

(wr
a

)
cos(`ϕ) exp(−iβz), r > a

(1.25)

Equation (1.25) is the general electric field for mode LP`m. The two subscripts are
the angular mode number ` and the radial mode number m. From the equation (1.25),
it is easy to understand how ` is related to the number of variations around a circle
in the transverse plane of the fiber. The number m doesn’t appear explicitly in (1.25)
because it specifies allowed range of u as explained later. The larger m is, the larger
u will be, which implies a greater number of oscillations of the function J`(ur/a). A
more specific interpretation of the mode numbers will be given further, along with field
profiles.

1.1.3 Eigenvalue equations for the LP modes

To determine the conditions under which a guided mode can occur (core radius, index
difference between core and cladding, etc.), we need to find the solution to the eigen-
value equation for the given parameters. This equation is derived using the continuity
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condition of the z component of the fields at r = a and is precisely detailed in [2]. It
is written

u
J`−1(u)

J`(u)
= −wK`−1(w)

K`(w)
(1.26)

Solving this equation yields phase constants and field profiles [using (1.25)] for
each mode that can propagate in a fiber with any choice of dimensions, operating
wavelengths and materials. One way to solve it gives a good understanding of the
repartition of the roots and is interesting when trying to find all the possible modes in
a given fiber.

Graphical Solution Method

This method consist in an analysis of the functions constituting the two sides of (1.26)
to find solutions of the eigenvalue equation. The method is illustrated on Figure 1.4
for the case ` = 1 where (1.26) becomes

J1(u)

J0(u)
= − u

w

K1(w)

K0(w)
(1.27)

The left hand side of this equation, when plotted as a function of u, resembles a
tangent function. As shown in Figure 1.4, to the branches of the function are assigned
numbers the correspond to values of m, beginning with m = 1. The numbering is done
separately on the upper and lower half-planes.

The right hand side of (1.27) is plotted as a function of u = (v2−w2)1/2 for V = 2,
8 and 11 in Figure 1.4. By setting w = 0 we get the upper bound for u before which
the solutions of the equation can be found. The same graph is used to exhibit LP0m

modes. When setting ` = 0 in (1.26) and using the relations J−1 = −J1 and K−1 = K1,
we obtain

J1(u)

J0(u)
=
w

u

K1(w)

K0(w)
(1.28)

Some similar plots can be made for LPlm modes for l ≥ 2. The curves J`/J`−1

thereby produced fall between some of the curves of Figure 1.4, making the progression
of acceptable modes with increasing v somewhat more complicated than the simple
alternate case illustrated. It gets more complex as the value of v gets bigger because
higher order modes can propagate. We can note the single-mode operation, when
only the fundamental mode will be able to propagate, occurs when only the very first
branch in Figure 1.4 intersects the other curve. Therefore, the range of values for those
operations is 0 < v < 2.405.

Mode Designation

Mode ordering and designation is determined by their cutoff conditions, that is to say
the minimum value of v allowing this mode to propagate. It can directly be found
using (1.26) and setting w = 0. The cutoff condition obtained is therefore

vc
J`−1(vc)

J`(vc)
= 0 (1.29)
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Figure 1.4 – Graphical method illustration for LP0m and LP1m
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It is satisfied for all zeros of J`−1. The case vc = 0 is handled by the approximation of
J`(v) valid for small values of v,

J`(v) ≈ 1

`!

(v
2

)`
(1.30)

Equation (1.29) becomes

`vc (vc/2)`−1

(vc/2)`
= 2` (1.31)

which is zero only when ` = 0 and therefore uniquely applies to LP01 mode with vc = 0.
When vc 6= 0, (1.29) becomes the simple expression

J`−1(vc) = 0 (1.32)

Cutoff conditions are identified as zeros of Bessel functions with a restriction for
vc = 0. The ordering of the modes progresses when finding the zeros of Bessel function
and LP`m is associated with the mth zeros of J`−1. When fibers parameters are given,
all the modes that can propagate can be deduced by this list of zeros.

1.1.4 LP modes characteristics

To visualize how LP modes behave and are ordered, we plot several intensity profiles for
different propagating LP modes in a given fiber. The intensity is found by evaluating
the time average of the Poynting vector, which is in the case of the quasi plane wave
approximation

| < S > | = 1

2
Re(ExH

∗
y ) =

1

2η
|Ex|2 (1.33)

Defining I0 the peak intensity, the intensity function for a LP mode is written

Ilm =


I0J

2
`

(ur
a

)
cos2(`ϕ), r ≤ a

I0 [J`(u)/K`(w)]2K2
`

(wr
a

)
cos2(`ϕ), r > a

(1.34)

Figure 1.5 shows intensity plots for eight LP modes, calculated from (1.34), along
with the label of the mode. The significance of ` and m now becomes apparent. ` is half
the number of maxima that occur in the intensity over a 2π rotation of ϕ and m is the
number of maxima encountered along a radial line between zero and infinity. For ` = 0,
two polarization state can occur : one for each polarization axis inside the fiber. For
` ≥ 1, each mode has 4 different polarization state, two because of the two solutions
found in (1.16) and two others for the polarization axis of the fiber. In the model
studied further, only one polarization axis is taken into account for the simulations.

Computing the parameters

The resolution of (1.26) yields all the necessary parameters for simulating light propa-
gation in a given fiber and a complete description of LP modes. More straightforward
methods [4] enable to solve approximately (1.26) and obtain simple expressions of u,
β, etc. as functions of the fiber parameters.
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Figure 1.5 – Several modes in a fiber of core radius 15µm with v = 12
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First, the characteristic equation (1.26) is differentiated with respect to v, yielding
the new characteristic equation

du

dv
=
u

v
(1− κ`(w)) (1.35)

where

κ`(w) =
K`2(w)

K`−1(w)K`+1(w)
≈ 1− (w2 + l2 + 1)−1/2 (1.36)

Since u always stays in the narrow region between two successive roots of adjacent
Bessel functions, the following approximation where u is replaced by uc, is valid for all
modes except LP01 (its mode parameters u, v and w all approach zero simultaneously:

w ≈ (v2 − u2
c)

1/2 (1.37)

Then, solving (1.35) yields

u(v) = uc
exp (arcsin (s/uc)− arcsin (s/v))

s
(1.38)

with

s = (u2
c − l2 − 1)1/2 (1.39)

from [4] we get the expression of u as a function of v for LP01

u(v) = v
1 +
√

2

1 + (4 + v4)1/4
(1.40)

This is an expression of u as a function of the fiber parameters and mode charac-
teristics only. It enables to compute the propagation constant β for a given mode.

We can also plot b = 1−u2/v2 = (β2/k2
0−n2

2)/(n2
1−n2

2), the normalized propagation
parameter as a function of the normalized frequency v as done in [4]. The plot is
reproduced Figure 1.6 where the number on each curve represents the mode designation
as defined in 1.1.3.

We can notice that as expected, the relation n1k0 ≤ β ≤ n2k0 is satisfied. Every
propagation constant of the LP modes is slightly different from the others and is found
in the tiny space between the previous and the next mode’s propagation constants.

Those differences in propagation speed lead to the modal dispersion phenomenon
in multimode fibers. Every mode component of the field acquires a dephasing when
propagating and a signal progressively gets very deteriorated. Table 1.1 shows u, β
and the effective refractive index, which is defined as neff = β/k0 and represents the
uniform refractive index a mode ”sees”. As for the propagation constants, the effective
refractive indexes are all slightly different. To quantify the impact of this difference,
we can take a look at the dephasing length, or the length after which two modes are
dephased of more than 2π radians and could therefore be dephased of any multiple of
2π plus the current observed dephasing. The expression of the dephasing length for
several modes is :

DL = min
β1 6=β2∈B

∣∣∣∣ 2π

β1 − β2

∣∣∣∣ (1.41)

where B is the set of all the propagation constants of the propagating modes.
For the modes of Table 1.1, the smallest dephasing length is the one between LP01

and LP13 and it is only 306µm. For almost all applications, this number is a lot smaller
than the length of fiber needed, hence the need for controlling, predicting or reversing
the modal dispersion in order to achieve clean signal transmission.
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Figure 1.6 – Normalized propagation parameter b = (β2/k2
0 − n2

2)/(n2
1 − n2

2)
as a function of the normalized frequency v. [4]

Mode
designation

u value Propagation
constant β

Effective
refractive
index

x106m−1

LP01 2.25 9.1490 1.49980
LP11 3.58 9.1471 1.49949
LP02 5.16 9.1438 1.49894
LP12 6.55 9.1398 1.49829
LP03 8.01 9.1344 1.49740
LP13 9.47 9.1285 1.49643
LP21 4.8 9.1447 1.49908
LP31 5.96 9.1416 1.49858

Table 1.1 – Some mode parameters for a signal in a multimode fiber. The
fiber parameters are a = 15µm, n1 = 1.5, n2 = 1.4914, v = 14.64, NA = 0.16

1.2 Transmission Matrices and Multimode Fibers

In classical optical systems, propagation of an electromagnetic field is well understood,
with diffraction theory for example, as long as multiple scattering doesn’t occur. In
media for which light is scattered multiple times, light intensity exponentially decreases
as the depth increases. All input vectors get mixed up in a seemingly not understand-
able but still deterministic way. Nonetheless, no information is lost during a multiple
scattering event and the speckle pattern (see Figure 1.7) - result of the transmission of
coherent light through the medium - is the superposition of the very large number of
optical channels light has been transmitted through.
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(a) Speckle pattern recorded at
λ = 1500nm from the end of a
100m long MMF [11]

(b) Speckle pattern formed
when a laser beam was scattered
from a plastic surface

Figure 1.7 – Examples of speckle patterns

1.2.1 Transmission Matrices

The transmission matrix of an optical system is defined in [10] as the matrix K of the
complex coefficients kmn connecting the optical field in the mth of M output-free mode
to the one in the nth of N input-free mode. In other words, it is the matrix representing
the linear transformation the medium applies to an optical field, projected at the input
on the base of the input-free modes and on the base of the output-free modes at the
output.

If we write the projection of the outgoing field on the mth free mode Eout
m , we have

the relation Eout
m =

∑
n kmnE

in
n for every m where Ein

n is the amplitude of the projected
field on the nth input free mode. Assuming an incoming field decomposable on the N
incoming modes we have :

Eout =
∑
m

∑
n

kmnE
in
n (1.42)

When applied to the canonical basis of the pixels of a CCD and the corresponding
discretisation of the input, the TM describes the relation between input and output
”pixels” and gives an understanding of the effect of light transmission through it.

Experimentally, spatial light modulators (or SLM) are used to perform so-called
wavefront-shaping by controlling independently the phase and/or amplitude of every
pixel at a particular location in the experimental setup. In practise, although the
observed transmission matrix Kobs could be inverted to obtain a perfect image trans-
mission and reconstruct a given input from the output speckle, it yields instability
in presence of noise. Therefore, the mean square optimized operator (MSO), which
minimizes transmission errors [12] is generally used in practise [10],[9].

Knowing the transmission matrix of a medium enables to reconstruct an image by
inverting the scattering process [10] or to take advantage of the medium to perform
particular effect on a light beam such as focusing by sending the right input into the
medium [8], [13].
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1.2.2 Modal Transmission Matrices and MMFs

When considering Multimode fibers, an interesting basis for transmission matrices is the
one of acceptable LP modes. As explained in section 1.1.3, LP modes are eigenmodes
for the fiber, that is to say they only see their phase change when propagating. As
guided light in a MMF is always a sum of LP guided modes, an incoming field in a
fiber can be represented as a column vector containing the weights of every LP modes
in the field. If we denote ψi(x, y, z) the ith LP guided mode of the fiber, an input light
field can be written

E(x, y, z) =
∑
i

αiψi(x, y, z) +

(
E(x, y, z)−

∑
i

αiψi(x, y, z)

)
(1.43)

with

αi =

∫∫
E(x′, y′, z)ψ∗i (x

′, y′, z)dx′dy′ (1.44)

And the guided component of the field E is simply represented in the LP guided modes
basis by the column vector

α = (α0, α1, ..., αn)T (1.45)

I we know the transmission matrix K of the portion of fiber, the output field can be
represented by a column vector α′ = (α′0, α

′
1, ..., α

′
n)T where

α′ = Kα (1.46)

Theoretically, the transmission matrix of the fiber in such a basis is a diagonal
matrix with the propagation induced phase shift coefficients e−iβiL where L is the
length of the fiber.

Experimentally measured MMFs transmission matrices are rarely diagonal but al-
ways exhibit mixing between the modes in specific mode groups [8]. These off-diagonal
elements can be greatly reduced when improving the input-ouput alignment for the
fiber and reducing its bending.

The transmission matrix obtained on the LP guided modes basis can then be used
to perform wavefront shaping by changing its basis to a SLM pixel basis. This enables
to perform imaging or telecommunications with MMFs but isn’t enough for high energy
applications where non linear effects perturb the modal composition and deteriorate
the signal. Being able to control the signal modes and their propagation could allow
to solve this kind of problems and amplified MMFs might be the way to achieve this
kind of control.
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Simulating the propagation of light
through a MMF

The influence of amplification is described by a theoretical model that is based on the
modal behavior of the pump and signal beams in the fiber and population inversion
induced by the amplification that applies to each mode of the signal. To investigate
the influence of amplification on the signal’s modal composition, finite elements simu-
lations were used. The field corresponding to the pump beam which propagates in the
direction opposed to the one of the signal beam is calculated in the whole fiber and
the transmission matrix is deduced by multiplying the ones of several subdivisions,
calculated with the model further exposed. Since it had to be possible to simulate
the influence of many different pumps to perform optimization, a trade-off between
memory and computation time and an efficient implementation were studied.

2.1 The model

The methods exposed in 1.2 can be extended to Multimode Fiber Amplifiers, where
the amplifying beam excites new modes and transforms the Transmission Matrix. The
model explained further describes the relation between the pump intensity and the
stimulation of signal modes during the propagation of a pump beam.

2.1.1 Incoming beam in a MMF

When a light field enters a MMF, it can be considered as decomposed on the modal
basis of the fiber. All those modes then propagate the way predicted by the equations
of Section 1. We also explained the meaning of the following expression in 1.2.2:

E(x, y, z) =
∑
i

αiψi(x, y, z) +

(
E(x, y, z)−

∑
i

αiψi(x, y, z)

)
(2.1)

and if we assume the incoming field is a sum of LP guided modes only, it becomes

E(x, y, z) =
∑
i

αiψi(x, y, z) (2.2)

The number of modes in a given fiber can be computed by solving equation (1.26)
or by using the approximations of Section 1.1.4. To effectively and efficiently compute
those parameters, the method being used in the simulations is the one outlined by
Mitschke in [5]. His method is based on the fact that when computing the solutions, the
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values of u satisfying (1.26) can be grouped in pairs. This can be intuitively understood
with Figure 1.4. In practice, the solutions for LP01 and LP11 will be searched for first,
then LP02 and LP12 if they exists, moving to ` = 3 and ` = 4 if they don’t, etc. The
code implementing this method for the simulation is in Listing A.1.

Space can be discretised for the simulation in both the transverse plane and lon-
gitudinal dimension. E can be written in all the fiber with equation (1.25), assuming
that there is no absorption of light in the fiber material. For fibers with lengths of
the order of 1 m, this approximation is satisfying enough. The obtained values for the
light field are valid for both a propagating signal beam and a pump beam, ensuring
the z-axis is inverted with the latter.

Figure 2.1 – Diagram of the Transmission Matrix calculation division and
recombination

The length of the discretisation must ensure that no information is lost about the
pump beam, which will be used to calculate the transmission matrix. For this, the
discretisation length must be smaller than the smallest dephasing length between two
modes of the propagating pump. That is

∆z < DLpump (2.3)

where DL is defined as in (1.41).

2.1.2 Rare-earth amplified fiber

The work I carried out focuses on Multimode Fiber Amplifiers (MMFA) and more
precisely Ytterbium-doped fibers. As shown on Figure 2.3, Ytterbium MMFA are
experimentally amplified by adding a pump beam of different wavelength which will
excites the Yb atoms and trigger lasing and amplification of the propagating signal.

Light enters the fiber with a certain amount of energy and is then amplified by
stimulated emission. The pump propagating, similarly to the signal, with modal com-
ponents, the population inversion of Yb atoms is non uniform and therefore has a more
complex effect than uniformly amplifying the signal. With a given modal decomposi-
tion of the signal at some z in the fiber, the amplification will occur on each mode but
non uniformly spatially on the corresponding cross-section of the fiber. It is assumed
that the obtained amplified field can then be decomposed again on the basis of the
signal modes of the fiber and that the process can be repeated at z + dz.
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Figure 2.2 – Diagram of a MMFA setup for visualizing the influence of a
shaped pump beam on the fiber transmission matrix. The pump beam enters
the fiber on the side opposite to the signal input. A dichroic mirror enables
to retrieve the fiber output.

Figure 2.3 – Diagram of a energy levels of Y b3+ ions and the usual pump and
laser transitions. Here the pump beam of wavelength 940 nm triggers popu-
lation inversion and stimulated emission with the signal beam of wavelength
1040 nm [6].

This central part of the model can be written in equations : if

Ein|z = ψs,i(x, y) (2.4)

is the input field having components one only one signal mode ψs,i at coordinates x, y, z,
the output field at x, y, z + dz is written

Eout|z+dz = eiβ∆zψs,i(x, y)︸ ︷︷ ︸
passive propagation

of the mode

+
N∑
j

αj(z)ψs,j(x, y)︸ ︷︷ ︸
amplified part of the signal

decomposed on all

the signal modes

(2.5)

where αj(z) is

αj(z) = gY tiβi∆ze
iβi∆z

∫∫
Ipump(x

′, y′, z)ψs,i(x
′, y′)ψ∗s,j(x

′, y′)dx′dy′ (2.6)
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The term gY t is a complex-gain coefficient. It links the pump intensity and the am-
plification and phase-shift of the signal field depending on the signal and pump wave-
lengths. The absorption and gain spectrum of the Ytterbium is described in [7] and
the corresponding phase-shift is obtained with the Kramers-Kroning relations [1].

It is not surprising to see that if Ipump = 0 is equals to 0 in (2.6), equation (2.5)
becomes Eout|z+dz = eiβ∆zψs,i(x, y), the regular expression for propagation of a mode
in a fiber slice of length ∆z. Furthermore, if Ipump is uniform on every cross-section,
all the integrals in (2.6) are equal to 0 for i 6= j because the modes are orthogonal.
The modes would be in that case only self-amplified according to the intensity of the
pump (the transmission matrix would then be diagonal). Therefore, the influence of
the pump beam is interesting when it is non-uniform, that is to say when the integrals
of (2.6) aren’t 0 and when some amplified modes excite others in the signal.

2.2 The simulation and its challenges

This section describes how the simulation was implemented and what were the technical
and computational difficulties encountered. Different issues have strongly influenced
the simulation and the realisation of optimization on powerful computers to make it
possible to simulate many realisations of different modal compositions of the pump to
compare the resulting transmission matrices and find interesting links between certain
pump configuration and specific effects on the signal.

To have a rough idea of the computational resources needed for running the simu-
lation, we can estimate the size of the data needed to simulate the whole fiber at once
and calculate the resulting transmission matrix. First, the typical order of magnitude
of the fiber amplifier’s parameters are λsignal = 1030nm, λpump = 975nm, NA = 0.16,
a = 15µm (core radius), n1 = 1.5, L = 5cm. This corresponds to 59 propagable modes
for the pump and 52 propagable modes for the signal. The size of the (x, y) spatial
discretisation had to be chosen to be the smallest possible without losing too much
information on the pump wave’s intensity profile. The threshold arbitrarily chosen
was between 5 and 10 pixels (space elements) per spot on the speckle pattern, which
corresponds for the 59 modes of the pump to approximately 200 spatial points in each
direction of a cross-section of a fiber. The z-axis discretization was chosen to be 1/6th
of the global dephasing length (the smallest dephasing length between all the modes of
the pump), value beyond which the distance (in the sense of the max norm) between a
matrix simulated with this step and an other with a smaller one is smaller than 10−5.
For a dephasing length of typically 10µm and a 5cm long fiber (rather small compared
to MMFA commonly used for regular applications) there are 5000 slice to use and thus
5000 transmission matrices to calculate and recombine to get the final transmission
matrix.

The number of integrals (2.6) to be calculated is equal to N(N − 1)/2 where N
is the number of signal modes, in this case 1326 couplings between modes. Since the
array containing all the fields on the grid at z = 0 are used in all the integrals, it is
kept for all the simulation to avoid recalculating it. All the fields are complex scalar
and every element is stored on 128 bits in python. The biggest and most expansive
array from a memory point of view is the one in which the integral is calculated.
Since the resulting local matrices for a slice can be calculated independently from one
another, it is theoretically possible to directly compute all the integrals corresponding
not only to all the couplings in a slice of fiber but also to the all the slices of the fiber
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simultaneously. The size of the array would then add up to

1326︸︷︷︸
number of
couplings

· 5000︸︷︷︸
number of

slices

· (200 · 200)︸ ︷︷ ︸
number of

spatial points

· 128︸︷︷︸
number of bits
per elements

= 35.2TB (2.7)

This number is excessively big even for computer clusters and we therefore quickly
abandoned the idea of performing single shot calculations of transmission matrices.
If we do the same calculation one fiber slice at a time the size of the array to be
handled is down to 7GB. This number is still quite big for regular computers but
is acceptable for simulation computers with RAM between 32GB and 96GB. Yet, the
native implementation of sum and product functions in python not being well optimized
for multicore CPUs, each slice was taking approximately 1 second to be calculated that
is 1 hour and a half for each matrix. Optimization would need to be able to test at
least every mode in the pump and would be efficient with much more realisations.
To be able to perform optimization, the code was parallelized over the multiple core
of a CPU. Slices are equally partitioned and each batch is processed by a single core
sequentially. The corresponding code for parallelizing is in Appendix A Listing A.2. It
made it possible to calculate a whole 5cm fiber’s transmission matrix in only 1 minute
30 seconds and to evaluate much more realization of pump configurations.

The optimization that was selected does a scan of all the modes one by one. The
starting point is a random pump configuration, with a weight of 1 for all the modes
and a random phase for each one of them. This decision was based on the assumption
that the influence of the phase on the overall transmission matrix was negligible. It
had been investigated with test simulations early on in the work. The program then
looks at each mode and tries to change it’s weight to 0.3, 0.6, 0.9 and 1.2 and keeps
the best configuration before going on to the next mode. The algorithm converged
after between 2 and 3 scans of all the modes, that is between 472 and 708 transmission
matrices’ calculations.
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Results of the simulations

Since a single optimization scan takes at least 6 hours to run, we had to select some
particular elements we were going to look at and which we tried to maximize. Not all
the elements showed a possibility to be maximized with the optimization algorithm, but
some of them reacted significantly, exhibiting other behaviors on related modes. Sig-
nificant minimization of diagonal elements was observed, suggesting the possibility to
tune amplification specifically to disable entirely one mode channel. The phenomenon
of extinction was also linked in some cases with an intermodal coupling which has also
been investigated with simulations.

3.1 Maximizing an off diagonal element

The results of Figure 3.1 were obtained when running the optimization algorithm with
the objective of minimizing the cost function

J(pump) = −
∣∣∣∣TMpump[10, 13]

TMpump[13, 13]

∣∣∣∣ (3.1)

where pump can be represented by a vector of size 59 containing complex numbers
(wke

iθk)k∈{1...59} with wk the weight assigned to mode k and θk its randomly initialized
phase.

J(pump) is a function of all the weights assigned to the pump modes for a given
set of fiber parameters. The relation is strongly non linear in the pump weights be-
cause of the intensity term Ipump in (2.6). It is therefore very hard to predict or even
approximate the influence of each ”dimension” of the pump space and to be able to
perform regular optimization methods on the pump. Even a systematic exploration of
this discretized space would be far too time consuming, because one scan of all the pos-
sible configurations would mean computing (number of possible weights)number of modes

transmission matrices. That is, for the typical configurations studied here, 359 or 459

transmission matrices.
At each iteration, the algorithm perturbs the weight of a mode and keeps the

perturbation that results in the lowest cost function value(which can be no perturbation
at all). J(pump) is the ratio of TMpump[10, 13] and TMpump[13, 13] rather than only
TMpump[10, 13] to take into account the ”channel 13 to channel 13” transmission and
to compare how much amplification of mode 13 triggers mode 10 instead of mode 13
itself.

Figure 3.1 shows two optimization examples. The simulation was stopped after two
scans on both examples ; it was very progressive and slow at the beginning and then
only improves by large amounts and sporadically from the beginning of the second scan
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Figure 3.1 – Two optimization results for maximizing target element
TM[10, 13]. The blue curve represents the value of the cost function at a
given iteration. The green curve is the best result so far and the red handles
represent the corresponding change of a mode’s weight for a newly selected
best pump configuration.

until the end of optimization. By looking at the red circles we notice that most of the
modes were turned down during the optimization process. Some others were kept and
likely account for the results obtained.

In both cases, after the end of first scan the value of J(pump) (for purpose of clarity,
−J(pump) is plotted in Figure 3.1) gets very unstable, meaning that a minima has been
reached. The first minima corresponds to J(pump) = 19.5, that is element [10,13] is
in absolute value 19.5 times larger than element [13,13] that traduces the mode 13’s
component of an output when mode 13 is the only input. The results were impressive
given the fact that in preliminary simulations we only observed slight perturbation
of the transmission matrix but never such significant ratio between an off-diagonal
element and a diagonal element.

The first and final pump configurations for each optimization case are shown in
Figure 3.2. A trend appears clearly with the majority of modes being turned down
to a weight of 0.3 (the minimum possible value for the algorithm). Some modes have
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(b) Second optimization

Figure 3.2 – First and final pump configuration for the two optimization cases
of Figure 3.1. The modes are indexed from 0 in both directions (LP01 becomes
LP00). Some randomly selected modes are turned off for each simulation.

therefore more influence on particular elements of the matrix than other and they seem
to be similar from one simulation to another which could lead to insightful relations
between pump modes and signal modes.

Not all the simulations showed such impressive results for maximization of off-
diagonal elements of the transmission matrix. Some of them didn’t show off-diagonal
to diagonal ratios superior than 1 but were nonetheless significantly decreased. Figure
A.1 in Appendix shows two examples of significant optimizations of element [15, 30]

with the ratio
∣∣∣TMpump[10,13]

TMpump[13,13]

∣∣∣ going from 0.01 to 0.17 in the first case and to 0.39 in

the second case. Figure A.2 of Appendix shows quite different first and final pump
configurations, perhaps meaning that the cost function minima isn’t as well defined as
for element [10,13].

3.2 Minimizing a diagonal element

When looking closer at the results of optimization processes aiming for the minimization
of

J(pump) = −
∣∣∣∣TMpump[a, b]

TMpump[b, b]

∣∣∣∣ (3.2)

we noticed that the minimization was sometimes not only driven by the maximiza-
tion of |TMpump[a, b]| but also (and sometimes almost only) by the minimization of
|TMpump[b, b]|. This phenomenon was very surprising since the overall effect of the
pump propagation on a relatively long fiber was expected to ”average out” and the
self-amplification of each mode was supposed to stay strong.

We then tried to optimize with the following cost function to study more precisely
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the minimization of diagonal elements in the fiber :

J(pump) = |TMpump[b, b]| (3.3)

First, we optimized on element [13,13] to confirm what had been observed when trying
to maximize [10,13]. As for the first case, two optimizations with two different random
starting points were performed to verify the relative importance of the initial phase of
the pump modes.
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Figure 3.3 – Two optimization results for minimizing target element
TM[13, 13]. The blue curve represents the value of the cost function at a
given iteration. The green curve is the best result so far and the red handles
represent the corresponding change of a mode’s weight for a newly selected
best pump configuration.

The results are shown on Figure 3.3 where it becomes clear that it is possible to
minimize element [13,13] and reduce it from 350% of input mode 13 being found in
mode 13 at the output to less than 10%. It means that when mode 13 is send in the
fiber with such a pump, less than 10% of input intensity is retrieved on mode 13 at the
output. Those 35 fold improvements account for the results obtained with the ratio∣∣∣TMpump[10,13]

TMpump[13,13]

∣∣∣.
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Figure 3.4 – First and final pump configuration for the two optimization cases
of Figure 3.3. The modes are indexed from 0 in both directions (LP01 becomes
LP00). Some randomly selected modes are turned off for each simulation.

Figure 3.4 shows the pump configurations for the two optimization cases. There
are some similarities with the pump configurations obtained when optimizing on ele-
ment [10,13] and there is no doubt that when trying to minimize the above ratio, the
optimization naturally tended to minimize element [13,13].

This phenomenon is far from general and isn’t true for most of the elements of the
transmission matrix. With other simulations on elements [10,10], [12, 12] or [43, 43]
for example (the corresponding results are in Appendix), no below 100% values were
observed for the diagonal element. This might even be only an isolated phenomenon
affecting only one or two modes.

3.3 Intermodal coupling

The phenomenon of minimization of some diagonal elements implies that the input
and amplification energy of those modes is displaced to others. After observing the
transmission matrices, it appeared that this energy wasn’t equally distributed over the
other modes. It was rather concentrated on one particular mode as shown on Figure
3.5.

When mode element [13,13] is minimized, element [39, 39] is also minimized and
elements [13, 39] and [39, 13] are correspondingly maximized. There is therefore a
strong coupling between mode 13 and 39 which are closely related because they are
the odd and even counterpart of each other where odd and even correspond to the two
polarization states mentioned in section 1.14. This link can also be visualized with the
graph of Figure 3.6 where the absolute gain of LP1,2,even and LP1,2,odd is plotted as a
function of the length of the fiber. The pump configurations obtained with optimization
for 50mm corresponds to a minimum of gain for LP1,2,even and the gain is transferred
to its counterpart during transmission in the fiber.
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Figure 3.5 – Final transmission matrices for the two optimization cases of
3.1. Red lines emphasize the link between odd and even counterparts of the
mode being minimized

This coupling was also observed for other pairs of modes but and it seems to be
linked with minimization of self amplification of the corresponding modes. However,
many modes (especially LP0m modes that don’t have the degeneracy mentioned above)
didn’t exhibit the same characteristics.

Figure 3.6 – Absolute gain on mode 13 and 39 as a function of the length
of the fiber. There is an oscillating coupling between the two modes which
drives the minimization of element [13,13] in the example above.
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Conclusion

The influence of amplification on the behavior of light in multimode fibers is still very
complicated and unpredictable. The whole theory it is based on is well understood and
has very good results for regular fibers but the extension of the theory to amplified
fibers yields new surprising and complex phenomena mainly because of the non linearity
induced by the amplifier. A way to investigate the effects of amplification is to simulate
light propagation and compute the transmission matrix of an amplified multimode fiber
with the model described in the report. This simulation posed major problems of scale
to be able to use it to perform optimization and necessitated particular implementation
and hardware. The results gave new insights in the theory, showing that particular
pump configurations could achieve very specific behavior of the transmission matrix,
namely maximization of some elements and minimization of diagonal elements. The
latter was linked to a coupling between similar modes, leading to new questions about
the possibility to control light propagation in multimode fiber by shaping the pump
beam.

The control of amplification in fiber amplifiers with Spatial Light Modulators could
allow to verify experimentally those results and to get a better understanding of this
behavior. Moreover, there is still investigation to be done on the optimization process
to try more complex target than a single element of the transmission matrix and to
see if refining the grid search on the pump modes could lead to better results.
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Appendix

Listing A.1 – Find u solutions by Mitschke
# −∗− cod ing : u t f −8 −∗−
”””
Created on Mon Sep 26 18 : 08 : 23 2016

@author : Hugo
”””

import s c ipy . s p e c i a l as spec
import numpy as np
import s c ipy as sc
from CharFunForLP import Character i s t i cFunct ionForLP

def Find u So lut ions by Mit schke (V, eps=1e −12):
”””
Inpu t s a V number o f an o p t i c a l f i b e r and a d e s i r e d p r e c i s i o n eps and
ou t pu t s a l i s t o f t h e u s o l u t i o n s o f t h e e i g e n v a l u e e qua t i on a long w i th t h e
L and M va l u e s a s s o c i a t e d w i th t h e LP modes .
”””
u va lue s = np . z e ro s ( (100 , 100))
L va lues = np . z e ro s ( (100 , 100))−1
M values = np . z e ro s ( (100 , 100))−1
l = 0
NumOfZerosCeil = round(V/2)
GoOn = True

while GoOn:
EvenZeros = spec . j n z e r o s ( l , NumOfZerosCeil )
OddZeros = spec . j n z e r o s ( l +1, NumOfZerosCeil )

StopInd = np . nonzero ( EvenZeros > V) [ 0 ] [ 0 ]
i f StopInd == 0 :

GoOn = 0
else :

for m in range (0 , StopInd ) :

i f m == 0:
Le f tL imit = 0

else :
Le f tL imit = OddZeros [m−1]

u 0 = ( Lef tL imit + min(V, EvenZeros [m] ) ) / 2

def tempF(u , V, l ) :
return Character i s t icFunct ionForLP (u , V, l )

u s o l u t i o n = sc . opt imize . f s o l v e ( lambda u : tempF(u , V, l ) , u 0 )

i f Character i s t icFunct ionForLP ( u so lu t i on , V, l ) <= eps :
u va lue s [ l , m] = u s o l u t i o n
L va lues [ l , m] = l
M values [ l , m] = m+1

u 0 = ( EvenZeros [m]+min(V, OddZeros [m] ) ) / 2

u s o l u t i o n = sc . opt imize . f s o l v e ( lambda u : tempF(u , V, l +1) ,
u 0 )

i f Character i s t icFunct ionForLP ( u so lu t i on , V, l ) <= eps :
u va lue s [ l +1, m] = u s o l u t i o n
L va lues [ l +1, m] = l+1
M values [ l +1, m] = m+1

print ( ’u va lues f o r LP ’+str ( l )+ ’ , ’+str (m+1) +
’ ; LP ’+str ( l +1)+ ’ , ’ + str (m+1)+ ’−done ’ )

l = l+2
nonZeroUL = np . nonzero ( u va lue s [ : , 0 ] ) [ 0 ]

nonZeroUM = np . nonzero ( u va lue s [ 0 , : ] ) [ 0 ]

l max = nonZeroUL [ len ( nonZeroUL)−1]
m max = nonZeroUM [ len (nonZeroUM)−1]

u va lue s = u va lue s [ 0 : l max+1, 0 :m max+1]
L va lues = L values [ 0 : l max+1, 0 :m max+1]
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M values = M values [ 0 : l max+1, 0 :m max+1]

return ( u values , L values , M values )

Listing A.2 – Calculate Transmission Matrix Parallely
# −∗− cod ing : u t f −8 −∗−
”””
Created on Sat Oct 1 11 : 29 : 11 2016

@author : Hugo
”””

import numpy as np

from ArrangeModeMatrixAsList import ArrangeModeMatrixAsList

import sys
import numexpr as ne
import mul t ip ro c e s s i ng as mp
”””
This f u n c t i o n s g i v e s t h e matr ix f o r which eve ry e l ement i s t h e minimum va l u e
between the same e lement in a and p
”””

def matdot (A, B) :
C = np . z e ro s (np . shape (A))+0 j
for i in range (np . shape (A) [ 0 ] ) :

for j in range (np . shape (A) [ 1 ] ) :
C[ i , j ] = np .sum(A[ i , : ] ∗B[ : , j ] )

return C

def findMinimum (a , p ) :
a = a [ : , : , np . newaxis ]
p = np . z e ro s (np . shape ( a))+p
return np . amin (np . concatenate ( ( a , p ) , ax i s =2) , ax i s =2)

”””
This f u n c t i o n supe rpo s e s t h e f i e l d s o f a s t a c k a f t e r making them propaga t e o f
z in um wi th t h e p r opaga t i on s c on s t an t s o f ComplexAmp p
”””

def SuperposeModeFields ( ModeFieldStack , BetaStack , z in um , ComplexAmp p ) :

SummedField = np .sum( ModeFieldStack∗np . exp(−1e−6∗1 j ∗BetaStack∗ z in um ) ∗
ComplexAmp p , ax i s =2)

return SummedField

”””
This f u n c t i o n a p p l i e s t h e Ytterb ium Gain Model t o t h e Pump I n t e n s i t y f i e l d in
in order to ou tpu t a complex r e f r a c t i v e index which a f f e c t e v e ry o v e r l a pp ed
mode o f t h e s i g n a l
”””

def YtterbiumComplexGainModel ( PumpIntensity ) :
YbConcentration = 1e26
lbda = 1030e−9

RIC imag = 6.2734 e−25∗( lbda /2/np . p i )∗ YbConcentration

RIC real = 2.2513 e−32∗YbConcentration

RIC real = (7 . 4 /0 . 2 2 )∗ RIC real

ComplexRefractiveIndex = ( RIC real+1j ∗RIC imag )

PumpIntensity = findMinimum ( PumpIntensity , 1)
ComplexRefractiveIndex ∗= ( PumpIntensity −0/10)
return ComplexRefractiveIndex

”””
This f u n c t i o n t a k e s t h e v e c t o r o f a l l t h e p o s s i b l e c oup l i n g o f s i g n a l modes
amp l i f i c a t i o n p r o f i l e s and pu t s i t i n t o t h e form o f a t r an sm i s s i on matr ix
”””

def ArrangeListToHermitianMatrix ( vec , N) :
i f np . s i z e ( vec ) != N∗(N+1)/2:

print ( ” Error in ArrangeListTOHermitian” )
T = [ ]
return T

else :
Mat = np . z e ro s ( (N, N) )
Mat = Mat+0j
for r in range (N) :

eb = ( r +1)∗N−(r )∗ ( r +1)/2
eb = int ( eb )
sb = eb − (N−(r +1))
Mat [ r , r :N] = vec [ sb −1:eb ]

Mat wo diag = Mat−np . diag (np . diag (Mat ) )
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Mat = Mat wo diag + np . conj (np . t ranspose ( Mat wo diag ) ) + np . diag (np . diag (Mat ) )
return Mat

”””
Some f u n c t i o n s to mu l t i p l y t h e two b i g a r ray s in d i f f e r e n t ways ( t e s t i n g ) .
The method c u r r e n t l y used i s numexpr
”””

def MatrixMultip (A, B) :
return A∗B

def MultipAndSum(A, B) :
return np .sum(np . mult ip ly (A, B) , ax i s =(0 , 1 ) )

def numexprmultAndSum(X, Y) :
return np .sum( ne . eva luate ( ”X∗Y” ) , ax i s =(0 , 1 ) )

”””
s l i c eUp d i v i d e s t h e t ime and memory consuming c a l c u l a t i o n s i n t o sma l l e r chunks
which are summed s e p a r a t e l y i n t o t h e r e s u l t i n g array
”””

def s l i c eUp (X, Y, n ) :
s tep = round(np . s i z e (X[ 0 , 0 , : ] ) / n)
r e s u l t = np . z e r o s l i k e (X[ 0 , 0 , : ] )+0 j
for i in range (0 , np . s i z e (X[ 0 , 0 , : ] ) , s tep ) :

r e s u l t [ i : i+step −1] += numexprmultAndSum(X[ : , : , i : i+step −1] , Y)
return r e s u l t

def s l i c e C a l c ( ModeFieldStack p , BetaStack p , ComplexAmp p , L , MultipFactorIp ,
SubZaxis , PassiveTM , UniformGainTM , ModeCoupling s ,
NumberOfSignalModes , currentID , count ) :

print ( ” S l i c e ”+str ( count)+” entered ” )
sys . stdout . f l u s h ( )
LocTransmissionMatrix = np . eye (np . shape ( PassiveTM ) [ 0 ] )
Saturat ionCounter = 0
for z in range (np . s i z e ( SubZaxis ) ) :

PumpField = SuperposeModeFields ( ModeFieldStack p , BetaStack p ,
−L+SubZaxis [ z ] , ComplexAmp p)

Ip = PumpField∗np . conj ( PumpField )

Popu la t i on Inver s i on = Mult ipFactorIp∗ Ip
Saturat ionCounter += np . s i z e (np . nonzero ( Popu la t i on Inver s i on > 1 ) [ 0 ] )
ComplexRefractiveIndex = YtterbiumComplexGainModel ( Popu la t ion Inver s i on )
ComplexRefractiveIndex = ComplexRefractiveIndex [ : , : , np . newaxis ]

GMatrix = ArrangeListToHermitianMatrix (numexprmultAndSum(
ModeCoupling s , ComplexRefractiveIndex ) , NumberOfSignalModes )

tm = PassiveTM + GMatrix∗UniformGainTM
LocTransmissionMatrix = matdot (tm , LocTransmissionMatrix )

i f ( z % 70 == 0 ) :
print ( str ( count)+ ’ ’+str (100∗ z/np . s i z e ( SubZaxis ))+ ’ done ’ )
sys . stdout . f l u s h ( )

print ( ” S l i c e ”+str ( count)+” f i n i s h e d ” )
sys . stdout . f l u s h ( )
np . save ( ’ subMat ’+str ( currentID)+ ’ /mat ’+str ( count)+ ’ . npy ’ ,

LocTransmissionMatrix )

”””
The main f un c t i o n which c a l c u l a t e s t h e t r an sm i s s i on matr ix w i th a g i v en s e t o f
parameters
”””

def CalculateTransmiss ionMatr ix (ComplexAmp p , MultipFactorIp , dz , i , k ,
pump, numbModes , proc name , currentID ) :

print ( ”Entered : ”+str ( i )+str ( k)+str (pump) +
str (numbModes)+ ’ , ’+str ( proc name ) )

sys . stdout . f l u s h ( )
f i l e = np . load ( ” c u r r e n t F i l e . npz” )
L = f i l e [ ’L ’ ]
Xaxis = f i l e [ ’ Xaxis ’ ]
Yaxis = f i l e [ ’ Yaxis ’ ]
beta mat p = f i l e [ ’ beta mat p ’ ]
beta mat s = f i l e [ ’ beta mat s ’ ]
ModeFieldStack p = f i l e [ ’ ModeFieldStack p ’ ]
ModeCoupling s = f i l e [ ’ ModeCoupling s ’ ]
f i l e . c l o s e ( )
print ( proc name + ’ loaded ’ )
sys . stdout . f l u s h ( )

Nstep = int (np . c e i l (L/dz ) )
dz1 = L/Nstep
Zaxis = np . arange (0 , L+dz1 , dz1 )

Sy = np . s i z e ( Yaxis )
Sx = np . s i z e ( Xaxis )

BetaStack p = ArrangeModeMatrixAsList ( beta mat p , beta mat p )
BetaStack p = np . reshape ( BetaStack p , (1 , 1 , np . s i z e ( BetaStack p ) ) )
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ComplexAmp p = ArrangeModeMatrixAsList (ComplexAmp p , beta mat p )
ComplexAmp p = ComplexAmp p [ np . newaxis , np . newaxis , : ]

DoubleBeta s = ArrangeModeMatrixAsList ( beta mat s , beta mat s )

NumberOfSignalModes = np . s i z e ( DoubleBeta s )

expVar = np . exp(−1 j ∗dz1∗1e−6∗DoubleBeta s )
PassiveTM = np . diag ( expVar )

UniformGainTM = −1j ∗dz1∗1e−6∗DoubleBeta s∗expVar
UniformGainTM = np . reshape (UniformGainTM , (1 , np . s i z e (UniformGainTM ) ) )

Transmiss ionMatrix = np . eye (np . shape ( PassiveTM ) [ 0 ] )

Saturat ionCounter = 0
Zaxiscut = Zaxis [ 1 : ]
s l i c eLeng th = np . s i z e ( Zaxi scut )//mp. cpu count ()+1
count = 0
procL i s t = [ ]
for n in range (mp. cpu count ( ) ) :

SubZaxis = Zaxiscut [ n∗ s l i c eLeng th : ( n+1)∗ s l i c eLeng th ]
proc = mp. Process ( t a r g e t=s l i c e Ca l c ,

args=(ModeFieldStack p , BetaStack p , ComplexAmp p , L ,
MultipFactorIp , SubZaxis , PassiveTM ,
UniformGainTM , ModeCoupling s ,
NumberOfSignalModes , currentID , count ) )

p rocL i s t . append ( proc )
proc . s t a r t ( )
print ( ’ proc ’+str ( count)+ ’ s t a r t ed ’ )
sys . stdout . f l u s h ( )
count += 1

for proc in procL i s t :
proc . j o i n ( )

for n in range ( count ) :
tm = np . load ( ’ subMat ’+str ( currentID)+ ’ /mat ’+str (n)+ ’ . npy ’ )
Transmiss ionMatrix = matdot (tm , Transmiss ionMatrix )

print ( proc name+” : ”+’ Saturat ion was ’ +
str (100∗ Saturat ionCounter /( Nstep ∗0.78∗Sy∗Sx))+ ’%’ )

np . savez ( ”Data”+str ( currentID)+”/ currentMat”+str ( i )+” , ”+str ( k)+” , ” +
str (pump)+” , ”+str (numbModes)+” . npz” ,
Transmiss ionMatrix=TransmissionMatrix ,
ComplexAmp p=ComplexAmp p)
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Figure A.1 – Two optimization results for maximizing target element
TM[15, 30]. The blue curve represents the value of the cost function at a
given iteration. The green curve is the best result so far and the red handles
represent the corresponding change of a mode’s weight for a newly selected
best pump configuration.
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(a) First optimization
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(b) Second optimization

Figure A.2 – First and final pump configuration for the two optimization
cases of Figure 3.1. The modes are indexed from 0 in both directions (LP01

becomes LP00). Some randomly selected modes are turned off for each simu-
lation.
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Figure A.3 – Optimization result for minimizing target element TM[10, 10].
The blue curve represents the value of the cost function at a given iteration.
The green curve is the best result so far and the red handles represent the
corresponding change of a mode’s weight for a newly selected best pump con-
figuration.
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Figure A.4 – First and final pump configuration for the optimization of
Figure A.3. The modes are indexed from 0 in both directions (LP01 becomes
LP00). Some randomly selected modes are turned off for each simulation.
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Figure A.5 – Optimization result for minimizing target element TM[12, 12].
The blue curve represents the value of the cost function at a given iteration.
The green curve is the best result so far and the red handles represent the
corresponding change of a mode’s weight for a newly selected best pump con-
figuration.
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Figure A.6 – First and final pump configuration for the optimization of
Figure A.5. The modes are indexed from 0 in both directions (LP01 becomes
LP00). Some randomly selected modes are turned off for each simulation.
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