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Abstract

Emergent processes in complex systems such as cellular au-
tomata can perform computations of increasing complex-
ity, and could possibly lead to artificial evolution. Such a
feat would require scaling up current simulation sizes to al-
low for enough computational capacity. Understanding com-
plex computations happening in cellular automata and other
systems capable of emergence poses many challenges, es-
pecially in large-scale systems. We propose methods for
coarse-graining cellular automata based on frequency analy-
sis of cell states, clustering and autoencoders. These innova-
tive techniques facilitate the discovery of large-scale structure
formation and complexity analysis in those systems. They
emphasize interesting behaviors in elementary cellular au-
tomata while filtering out background patterns. Moreover,
our methods reduce large 2D automata to smaller sizes and
enable identifying systems that behave interestingly at multi-
ple scales.

Introduction
Cellular automata (CA) have been extensively studied since
the 1960s. Originally designed and studied to create ar-
tificial evolution from self-replication (Von Neumann and
Burks, 1966; Langton, 1984), previously studied cellular au-
tomata simulations were often of relatively modest sizes.
Only specific rules with repetitive or predictable dynamics
such as John Conway’s Game of Life (Gardner, 1970) have
been scaled up to larger grid sizes (104×104 or more cells).

For complex phenomena such as artificial evolution to ex-
ist and be open-ended within those simulated worlds, there
needs to be sufficient “capacity” — a large enough state-
space. In nature, complex and significantly different dynam-
ics often arise from uniform laws at a smaller scale (Ander-
son, 1972). It seems unlikely that such complex processes,
like artificial evolution, could happen in too small CAs be-
cause higher order dynamics do not have enough capacity to
emerge. However, several issues arise when scaling CAs to
large sizes:
• Time complexity rapidly becomes a bottleneck. Updating

a large number of cells is costly. Tricks such as caching
of some of the computations can help, but do not always
improve performance significantly (Gosper, 1984).

• Memory complexity can also become an issue when deal-
ing with numerous states, and especially grids in 3 dimen-
sions and more. In that case, even the underlying rule of
the system cannot be stored within reasonable memory
capacity.

• Visual inspection of these large grids is infeasible. Study-
ing CA complexity is rendered difficult by the highly vari-
able nature of emergent processes. It is especially the case
for large-scale systems.

When working with such large systems, it is less relevant to
focus on the local behaviors at the single cell level. This
is similar to other complex systems like the weather, in
which behaviors of individual atoms in a cloud are irrele-
vant to large-scale air mass movements. Much richer behav-
iors can be observed from studying large patterns’ formation
and their evolution. This should also hold true for CAs; we
further discuss this question in Conclusion. In this paper,
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Figure 1: Hidden structures in rule 18 are uncovered
by filtering the space-time diagram with our frequency
histogram-based method. (a) shows 300 timesteps of a
randomly initialized rule 18 simulation. Notice the complex
structures made visible in (b) with our method.

we investigate techniques which can help us visualize large
space-time diagrams of CAs. We demonstrate that simple
clustering and coarse-graining techniques can be used in or-
der to perceive structures which cannot emerge on smaller
grids. This is also useful for disordered cellular automata
with hidden structures as it is the case for the elementary
cellular automaton rule 18, illustrated in Figure 1 — more
details in Results.



Reducing large grids to smaller sizes while preserving in-
teresting behaviors such as pattern formation is essential to
apply to these CAs complexity metrics designed to work on
modestly sized grids (Grassberger, 1986; Zenil, 2010; Soler-
Toscano et al., 2014; Zenil et al., 2015). Common metrics of
complexity are often limited by the number of components
in the systems (number of cells in a CA grid, timesteps, etc.)
or may not be effective when small scale patterns are less
relevant than large-scale ones.

Related work
Previous work on coarse-graining cellular automata focused
either on conserving the main computational properties of
CA rules through exact coarse-graining or on filtering inter-
esting behaviors without reducing the amount of computa-
tions. Our work both highlights interesting behaviors and
compresses the representation, which we argue are neces-
sary to study complexity in large cellular automata.

Coarse-graining in cellular automata
Coarse-graining is an approximation procedure used to
speed up computations in systems made of many compo-
nents. It originated in Levitt and Warshel (1975) and is now
widely used in physics to model complex systems at var-
ious granularity levels, and is successful at modeling bio-
molecules (Potoyan et al., 2013; Ingólfsson et al., 2014;
Kmiecik et al., 2016).

Exact coarse-graining of elementary cellular automata
(ECA) has been investigated extensively in Israeli and Gold-
enfeld (2004, 2006). Authors found ways of rewriting
one-dimensional CA rules into each other through coarse-
graining of the transition rule. They built a graph of equiv-
alence of all 256 ECA and identified some rules that do not
admit any computational reduction. This indicates that some
cellular automata are accomplishing fundamentally more
computations than others.

Filtering
Filtering cellular automata (CA) was introduced to reduce a
CA’s behavior to its most relevant parts. The goal is to ex-
tract relevant irregularities from a CA’s space-time diagram.
Seminal work by Hanson and Crutchfield (1992, 1997) for-
malized the notion of domains and coherent structures in
cellular automata. They used a set of regular languages to
represent cellular automata dynamics and extract relevant
behaviors such as discontinuities between regular domains
or “particles”. Figure 7 shows a filtering example for cellu-
lar automaton rule 110 — in Wolfram’s numbering.

A filtering method similar to our proposed frequency-
based coarse-graining — originally presented as a complex-
ity metric for cellular automata — is introduced in Wuen-
sche (1999). The author proposes to progressively filter out
cells in cellular automata’s space-time diagrams according
to read frequency of the rule table. Cells that originated from

frequent rule table lookups are set to a quiescent or null state.
The choice of threshold has to be decided by a user for each
rule. Another notable difference is the method aims at mak-
ing visualization of gliders easier without reducing the size
of the grid or making more compact representations.

More recent work by Shalizi et al. (2006) uses the com-
bination of a modified Lyapunov exponent approach with
statistical complexity (Shalizi et al., 2004) to underline com-
plex behaviors. However, the first method requires repeated
perturbations and simulations of the system to study its sen-
sitivity.

Scaling-up cellular automata
Hashlife (Gosper, 1984) and other Game of Life-specific op-
timizations enable simulating a large number of cells for nu-
merous timesteps. Nonetheless, these algorithms essentially
exploit input redundancy. The regularity in patterns allow-
ing such optimizations might indicate a lack of novel pat-
terns being generated by the system.

This also means that Game of Life-based simulations
are computationally reducible to a much simpler system,
indicating that its computations are inefficient (Wolfram,
2002). An optimally complex-behaving computational
model should be impossible to predict except when com-
puting its actual evolution step by step.

In the following, we used coarse-graining as a method for
scaling down CAs in both time and space in order to make
visualization of larger patterns and complex behaviors eas-
ier. The underlying fine-scale computations may be essen-
tial for these larger patterns to appear, hence the necessity to
keep them. However, analogous to many natural processes
(swarms, chemistry, cells in an organism, DNA), interesting
behaviors might not be observable at the level of individual
components — or small groups of components (individuals,
single cells or molecules in the examples above). We view
coarse-graining as a way to reduce a cellular automaton’s
space-time diagram to its most relevant parts while keeping
primary dynamics in the background. The resulting diagram
would ideally be an irreducible system.

Proposed coarse-graining of cellular automata
For reasons stated above, we introduce coarse-graining
methods for cellular automata that are not reversible — in-
formation is discarded in the process. This process does not
attempt to find shortcuts for the computations of a cellular
automaton, but rather to selects relevant parts of the space-
time diagram and discards information irrelevant to the core
behavior. For example, a standard glider in Game of Life
spanning 3 × 3 cells could be replaced with a single cell
moving diagonally when coarse-graining by a factor 3. This
is because the actual oscillator’s dynamics might not be rel-
evant at this coarser scale.

Coarse-graining is akin to constructing supercells from
blocks of individual cells. These supercells are assigned a



new state and form a coarser partitioning of the initial grid
which can be studied as its own system. In particular, com-
plexity metrics or further coarse-graining can be applied to
this new grid.

Frequency histogram coarse-graining
A simple coarse-graining is achieved by mapping blocks
to a single supercell state according to the probability of
this configuration appearing, given a previously constructed
model. The easiest way to think of it is with a simple fre-
quency counting model of the distribution of 2 × 2 blocks
in a 2D CA. For a 2-state automaton, there are 16 possible
supercell configurations. The simplest model for the occur-
rence of these blocks is their empirical frequency. Let us
consider a CA with N blocks of 2 × 2 cells, let S(in) =
{0000, 0001, 0010, . . . , 1111} be the set of 2 × 2 blocks
and si ∈ S(in) be a given supercell. The probability pi of
observing supercell i on a grid G is estimated with

pi =
countG(si)∑

j∈S(in) countG(sj)
(1)

where countG(si) is the number of blocks matching (si) in
G.

Supercells can then be assigned a particular state. We call
the corresponding mapping f : S(in) 7→ S(out). S(out) can
be chosen depending on the desired output or use. For in-
stance, with S(out) = {0, 1} we can define f to map each
supercell si as follows:

f(i) =

{
0 if pi ≥ α
1 if pi < α

(2)

where α is a chosen threshold.

Partitioning the histogram. This method can be under-
stood as partitioning the histogram of supercell frequency.
In equation (2), supercells with low probability — with
higher self-information — are mapped to state 1 whereas
commonly occurring states are mapped to 0.

Choosing a partition of the histogram is equivalent to se-
lecting a suitable α — scalar for two output states, or vec-
tor α = (α1, . . . , αn) for n output states. Therefore, one
can map supercells to any number of target states (three or
more) by partitioning the frequency histogram into any num-
ber of bins. Supercell distribution can be anything between
uniform and very unbalanced, with a few supercells being
overwhelmingly represented (background) and only a few
occurrences of other configurations. The chosen partition-
ing has to deal with both situations equally well. In the fol-
lowing, we use a uniform partitioning of the area under the
negative log-histogram for elementary cellular automata —
supercells are divided into two bins of equal summed nega-
tive logarithmic probability. For 2D CAs, we use the same
method but with quadratic partition of the histogram (1/k2

instead of 1/k, with k the number of output states, chosen
because of better visual results).

Dithering. Histogram partitioning introduces another set
of parameters to be manually tuned, adding complexity to
the procedure. An alternative way to produce an output
image from the histogram is to use dithering. Dithering is
an image processing technique commonly used to reduce
large visual artifacts induced by quantization errors. Noise is
added to the image during the quantization process to make
the average local value of a set of pixels as close to their
target continuous value as possible. The resulting image is
created so as to match target continuous values with discrete
values only — cell states in the grid. It can be seen as an-
other way of partitioning the histogram with variable thresh-
olds that depend on a running quantization error. Figure 2
shows a comparison of dithering and regular histogram par-
titioning (Floyd–Steinberg’s algorithm was used (Floyd and
Steinberg, 1976)).

(a) Original CA (b) w/out dithering (c) with dithering

Figure 2: Close-up view of coarse-graining effects on a
4-states CA rule (1 shade of blue per state). Both coarse-
graining methods conserve many of the interesting struc-
tures. Dithering introduces additional artifacts on regular
backgrounds. Fig. 2a shows actual states in the CA sim-
ulation on a 128 × 128 grid. Fig. 2b is a coarse-grained
version of 2a with histogram coarse-graining, the grid is
64× 64 cells.2c is obtained with histogram coarse-graining
and dithering (see Dithering).

Visualization. One advantage of this frequency
histogram-based method is that it naturally highlights
rarer events in the simulation grid, creating a “heatmap” of
the simulation’s activity. Since we sort supercells according
to their observed frequency, the right choice of colors —
e.g. progressively darker gradient — can lead to automatic
highlighting of active regions of a cellular automaton.
Figure 3 shows the same simulation both unprocessed and
downscaled by a factor of 4 with coarse-graining. Although
much coarser, Figure 3b is more readable than the base
version, which is helpful when dealing with large grids1.

1Several figures in this paper have animated versions, accessible
at the paper’s project page https://hugocisneros.com/
ALIFE-Paper-2020/

https://hugocisneros.com/ALIFE-Paper-2020/
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(a) Base grid (b) Coarse-grained

Figure 3: Side-to-side comparison of a CA simulation and
its coarse-grained version. The first simulation is 256 ×
256 cells and the second has been coarse-grained to 64 ×
64. Notice the interesting patterns on Figure 3a are hardly
distinguishable. They are highlighted by histogram-based
coarse-graining in Figure 3b.

Hierarchical coarse-graining. The above procedure can
be applied recursively to the same cellular automaton or with
larger block sizes to get a progressively coarser representa-
tion. Since information is systematically discarded in the
process, it cannot be applied any number of times. For this
reason, many 2D CAs exhibiting interesting behaviors at the
micro-level but not at the macro-level have no remaining vis-
ible structure after reducing their scale several times with
this method.

Because a simple model like frequency counting can be
estimated quickly, hierarchical coarse-graining is easily ap-
plied to large grids, reducing the size by a factor of n (block
size) every time. For instance, this property makes it suitable
to search the cellular automata rule space for CAs behav-
ing interestingly at multiple coarse-graining levels simulta-
neously.

Clustering
Another way to convert blocks of cells for coarse-graining
is to distribute these blocks into a small number of clusters,
where each group becomes the new coarse state.

Several distance functions may apply here, the most nat-
ural of which being Hamming distance, which measures
how many states differ between two positions (Hamming,
1950). It is defined for two strings of equal length n,
s1 = [s(1,1), . . . , s(1,n)] and s2 = [s(2,1), . . . , s(2,n)], as the
number of positions where the two strings differ:

n∑
k=1

1
{
s
(k)
1 6= s

(k)
2

}
. (3)

A supercell of N ×N cells of a CA can be converted into
a string to be compared to other blocks with the Hamming
distance. For CAs, we limit ourselves to strings of digits

representing states, i.e. s(i,j) ∈ N. We use a vanilla imple-
mentation of the K-means algorithm where clusters’ centers
are computed using a continuous average of position vectors
rounded to nearest integer values. Clusters are initialized
with randomly selected observations.

Autoencoders for coarse-graining

Instead of just relying on the amount of information of a
given supercell’s configuration, one can also try to automat-
ically find a relevant representation with dimensionality re-
duction methods. Autoencoders are neural networks com-
posed of an encoder part and a decoder part, originally de-
signed to identify principal components of a collection of
data points (Baldi and Hornik, 1989; Hinton, 1989; Kramer,
1991). An encoder neural network converts data to a latent
vector of smaller dimension than the original input. Then, a
decoder neural network reconstructs a vector with the same
dimension as the input from this encoded latent represen-
tation.These models can automatically find an optimal con-
strained representation through minimizing a reconstruction
loss between the original input and the reconstructed output.

We denote the encoder network with E and the decoder
network with D. We frame the reconstruction problem as
a N class classification problem with multiple components
— one class per input state, one component for each cell
of the K cells in a block. The reconstruction loss is the
component-wise cross-entropy between the state of each in-
put cell and the reconstructed state after D ◦ E is applied.

Encoder
(with softmax)

Decoder

Figure 4: Diagram of the autoencoder architecture used
for coarse-graining. A block of 6 × 6 cells is encoded in
a vector of fixed dimension. There are 3 components in the
example. They can either represent a RGB color or a 3 states
smaller automaton.

Figure 4 illustrates the autoencoder layout for coarse-
graining. By adjusting the block size and dimension of the
encoded vector, one can influence the amount of informa-
tion conserved during encoding. Naturally, smaller blocks
will be more easily represented in lower dimension.

The encoder has a softmax layer to ensure the coded
state’s components sum to one. Therefore, one can view
this coded supercell as a mixture of states which can either
be kept as is or converted to a discrete state by keeping the
maximal component only. They are trained with stochastic
gradient descent until convergence.



Results
We evaluate our proposed coarse-graining methods in the
following two different ways:

• We compare our results on elementary cellular automata
(ECA) to previous works on particle and domain filtering.

• We use a metric which evaluates complexity of CAs in-
troduced in Cisneros et al. (2019) in order to compare our
methods’ complexity metric scores of the coarse-grained
systems and contrast the scores against a standard image
processing baseline that computes local average of neigh-
bouring cells followed by downscaling the grid. Using
the complexity metric we measure to what extent the in-
teresting behavior of cellular automata is conserved after
coarse-graining compared to this image processing base-
line.

In the following we begin by showing that a simple
histogram-based coarse-graining is effective at detecting
structures (such as gliders) in ECA space-time diagrams.
Our method achieves results comparable with previous
work, while being simpler to apply.

Domains and filtering
In the space-time diagrams of cellular automata, moving
structures such as gliders are embedded in uniform or pe-
riodic backgrounds, or “domains”. This domain is differ-
ent depending on the rule: some ECAs have uniform back-
grounds, checkerboard backgrounds or more complicated
patterns (e.g. rule 110). Crutchfield and Hanson (1993) also
identified chaotic domains, which cannot support regular
gliders but have “walls” and “particles”. Those correspond,
respectively, to boundaries between two chaotic domains
and propagating defects (localized structures with a pattern
different from the domain) within a domain.

Our proposed coarse-graining methods offer interesting
perspectives to filter cellular automata’s space-time dia-
grams, which enables identifying gliders and studying the
formation of large-scale patterns. We find that a simple his-
togram coarse-graining achieves results comparable to those
reported in Hanson and Crutchfield (1992); Eloranta and
Nummelin (1992); Hanson and Crutchfield (1997); Wuen-
sche (2011) for ECA rules 18 and 54. A similar approach
was undertaken in (Wuensche, 1999) in which the authors
used the entropy of rule table lookup frequencies to filter out
regular domains in the space-time diagrams of cellular au-
tomata and to identify gliders and domain boundaries. How-
ever, Wuensche’s approach described in Wuensche (1999)
does not attempt to downscale space-time diagrams.

Results on elementary cellular automata
We apply frequency histogram-based coarse-graining on el-
ementary cellular automata (ECA) and obtain space-time
diagrams with suppressed background domains. Resulting
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Figure 5: Space-time diagrams for rule 18 in elemen-
tary cellular automata. (a) Standard rule 18 space-time
diagram, starting from a random position. (b) Filtered do-
main with our frequency coarse-graining (even). (c) Our
domain boundaries extracted from the filtered domains in
(b). (d) Domain boundaries computed according to (Hanson
and Crutchfield, 1992). Note that (a) shows semi-chaotic
behaviour, which is hard to interpret, whereas our method
(b) highlights distinct domains within the disordered space-
diagram in (a). The detected domains and domain bound-
aries from previous work (d) and ours (c) are very similar.

partitions of ECAs’ space-time diagram are similar to re-
sults reported by Hanson and Crutchfield (1992, 1997). Fig-
ure 5(a) and 6(a) show the space-time diagrams of rules 18
and 54 with random initialization. Boundaries between dif-
ferent background patterns in both Figures were obtained
with coarse-graining; they are similar to boundaries ob-
tained by Hanson and Crutchfield. We also observe the prop-
agation of many of the same particles and defects without
any prior information about the cellular automaton rule.

Particles in Rule 54 have been used to implement compu-
tations (Boccara et al., 1991; Pivato, 2007; Martinez et al.,
2014). Because the presented reduction reduces the size of
the grid, it can merge some of those particles, sometimes re-
sulting in ambiguities and gaps. However, our goal here is
not to precisely describe particle interactions in order to ma-
nipulate or construct complex computations manually. Un-
derlying computations described in the works above are still
happening within our reduced CA simulation. We consider
the apparent destruction of some of these fine-scale details
acceptable in order to discover larger-scale complex behav-



ior.
Our method is also arguably much simpler than compu-

tational mechanics (used by Hanson and Crutchfield) which
requires some reverse-engineering of the rule and the con-
struction of a finite-state transducer to generate output sym-
bols. Although full automation has been demonstrated, this
method introduces significant overhead (Rupe and Crutch-
field, 2018). On the other hand, our method is sensitive
to the quality of statistical estimation of the frequency his-
togram (see equation (1)) and needs enough input examples
to achieve a reasonable result — examples in Figure 5 and 6
used simulations with the width of 3000 cells, ran for 6000
timesteps to obtain reliable pattern frequency estimates.

In the Figures, we used the coarse-graining method intro-
duced in Frequency histogram coarse-graining. Space-time
diagrams are coarse-grained by a factor 2 to a binary au-
tomaton — each cell corresponds to a 2-cell block. These
binary coarse-graining results in the Figures are labeled (c).
Because of the statistical nature of the domains of these 1D
ECA’s and the use of blocks of size 2, filtered domains differ
depending on the starting position of coarse-graining. We
distinguish an odd and even filtered domain.

Figure 5(c) is obtained by applying the element-wise OR
operator to both the even and odd domain diagrams to merge
them into a single space-time diagram. Figure 6(c) is ob-
tained by computing differences between neighboring cells
after the filtering process to highlight lines. Figure 7 is an-
other example showing filtering of particles in rule 110.

Complexity metrics and coarse-graining
Coarse-graining is not only useful for detecting gliders and
domains in space-time diagrams, but also as a tool to visu-
alize large CAs. To evaluate the quality of our proposed
coarse-graining methods, we compare complexity scores
computed according to Cisneros et al. (2019) for different
coarse-graining methods. This metric was shown to corre-
late well with a user study for interesting automata. It uses
neural networks to estimate how easy it is to learn a com-
pressed representation of a CA. We also compute the scores
on downscaled CAs as a baseline. Local averaging is used
for downscaling, with each block of N cells being replaced
by their average value rounded to the nearest integer state.

Experiments begin by sampling 3600 cellular automata
rules with 3 or 4 states. We apply the complexity metric
on a randomly initialized simulation on a 512× 512 grid of
cells. The top 100 rules with the highest complexity scores,
which should correspond to rules with interesting behaviors,
are then used for coarse-graining. We apply coarse-graining
on grids of 4096 × 4096 cells, scaling the grid down by a
factor of 8, and compute the complexity metric also on the
reduced grid. Figures reported in Table 1 are percentages of
rules still considered interesting (above the selection thresh-
old for the first step of the process) after coarse-graining.
The higher this number is, the more a method is able to con-

0 100 200

0

50

100

150

200

250

T
im

e

(a)

0 50 100

0

25

50

75

100

125

(b)

0 50 100

0

25

50

75

100

125

T
im

e

(c)

0 100 200

0

50

100

150

200

250

(d)

Figure 6: Space-time diagrams for rule 54. (a) Space-
time diagram of standard rule 54, starting from a random
position. (b) Filtered domain with our frequency coarse-
graining (even). (c) Particles filtered from the domains in (b)
using our method. (d) Domain boundaries computed using
computational mechanics (Hanson and Crutchfield, 1997).
Please note that particles are detected equally well using
computational mechanics (d) and our (simpler) frequency-
based method (c). Some close-by particle trails are merged
using our method.

Local-averaging K-Means Histogram Autoencoder
baseline

19.3% 40.4% 82.4% 84.2%

Table 1: Experimental results — Percentage of rules clas-
sified as interesting after reduction with our 3 proposed
methods (K-means, Histogram, Autoencoder), compared
to a local averaging baseline.

serve complex and interesting behaviors after the reduction.
Results in Table 1 suggest that using our proposed meth-

ods seems largely beneficial for studying complexity in large
systems. Histogram and autoencoder methods are superior
to downscaling using k-means and local averaging. This
could be attributed to the fact that contrary to the latter two,
the histogram and autoencoder both represent well anoma-
lies (rare events). This is because rare events are explicitly
captured and kept by the histogram method. They also repre-
sent useful information that may be kept for the reconstruc-
tion using the autoencoder.
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Figure 7: Spate-time diagram of rule 110 (a) and filtered
particles using our histogram-based coarse-graining (b).
Structures propagating in time (vertical axis) and space (hor-
izontal axis) become clearly visible in (b) as vertical and di-
agonal lines.

Discussion

Downscaling by local averaging is not an effective solution
to the coarse-graining problem for several reasons. In par-
ticular, it tends to favor the majority state in a supercell be-
cause of the averaging effect. Thin structures spanning only
few cells placed on a uniform background are likely to dis-
appear after coarse-graining although they may still be rele-
vant with respect to the large-scale patterns. The histogram-
based method explicitly encodes those more rare events in a
supercell, even if their size is relatively small compared to
the supercell size.

Figure 8 is a qualitative comparison of coarse-graining
methods. This cellular automaton was selected from the ex-
perimental dataset. When simulated on large grids, it gen-
erates large linear structures that are 4-cells wide. These
structure disappear after downscaling by averaging because
the background dominates the average. Other methods cor-
rectly highlight these structures when downscaling the grids
by a factor of 8. In Figure 9, we show another rule that
was selected for its high complexity score at multiple coarse-
graining scales from our dataset. The CA has significantly
different dynamics depending on the chosen scale. Exam-
ple 9a is a spontaneously occurring stable oscillating glider
with period 3. Large structures emerge from these simple
gliders when observing large grids. The online project page2

shows animated example for Figure 9, emphasizing the ad-
vantage of using coarse-graining for visualization.

A crucial advantage of the frequency histogram method is
its speed and ease of implementation compared to autoen-
coders. Other than a few hyper-parameters for partitioning
the histogram, no training or tuning is needed to produce the
coarse-grained output.

2https://hugocisneros.com/
ALIFE-Paper-2020/

(a) Downscaling by averaging (b) Histogram

(c) K-means (d) Autoencoder

Figure 8: Qualitative comparison of coarse-graining
methods. Simulations are on grids of 4096 × 4096 cells
coarse-grained to 512 × 512. Lines are barely visible with
downscaling 8a, but are visible in 8b-8d. Coarse-graining
helps visualize linear structures that would be hard to see
otherwise.

Conclusion
We intend to use these coarse-graining methods to find cel-
lular automata (CA) which exhibit interesting behaviors at
multiple scales. Figure 9 shows an example of such a CA.
We observe various dynamics depending on the scale, from
simple oscillating gliders to large wave-like patterns com-
posed of thousands of gliders. It demonstrates that observ-
ing multi-scale behaviors within those automata is possible.
The existence of 2D cellular automata with disordered be-
haviors at the smallest level but organized at coarser scales,
similar to hidden patterns in rule 18, would also be of great
interest.

Cellular automata are powerful computational models.
Some of them have been shown to be Turing-complete, and
can thus be expected to support arbitrarily complex com-
putations (Berlekamp et al., 2001; Cook, 2004). Naturally,
most interesting CAs spontaneously generate a fraction of
available computations at a time, usually supporting a few
stable oscillators or moving structures. Proofs of universal-
ity for these CAs required careful design of computational
devices out of these stable oscillators and structures, result-
ing in very brittle and inefficient universal computers. In
practise, only elementary functions — such as density clas-

https://hugocisneros.com/ALIFE-Paper-2020/
https://hugocisneros.com/ALIFE-Paper-2020/


(a)
(b) 128× 128 cells (c) 512× 512 cells

(d) 2048 × 2048 cells coarse-
grained to 256× 256.

(e) 4096 × 4096 cells coarse-
grained to 256× 256.

Figure 9: Changing CA dynamics at multiple scales. (a)
shows a single glider, oscillating between 3 positions. Such
gliders emerge spontaneously from a random initialization
of a small grid as shown in (b). When scaling the grid up,
trails of gliders begin to appear, creating moving straight and
diagonal lines as shown in (c). Scaling-up even more, indi-
vidual gliders are not visible anymore, as shown in (d). In an
even larger grid, shown in (e), many more triangular-shaped
waves travel and collide with each other. Please note that
(d) and (e) are coarse-grained to 256 × 256, otherwise the
patterns are not visible.

sification, binary addition, etc. — can be implemented. This
requires searching for CA rules specifically targeted at a par-
ticular function (Mitchell et al., 1996; Wolfram, 2002; Sapin
et al., 2003). Hierarchies are central to naturally occurring
complex phenomena (Simon, 1962), and may be required
for robust and complex processes to emerge in CAs.

Viewing space-time diagrams of cellular automata is akin
to visualizing a foreign computer design. Cellular automata
are manipulating information, registers and instructions in
parallel in the form of cell states. We believe visualization
tools proposed in this paper can help understand computa-
tions in those unconventional computers. By reducing avail-
able information to its essential parts, we attempt to distill
the content of the space-time diagram with as little prior in-
formation as possible. Future work could focus on identi-
fying some known simple computational primitives within
cellular automata and understanding how our visualization
can help to find them.

These methods also enable apprehending large grid sizes
for which even image processing algorithms begin to show
limitations. Complexity metrics and CA classification tech-
niques can be extended to these reduced large grids and
could lead to the discovery of CAs with — similar to life
and physical processes — significantly different dynamics
at multiple scales that could in turn be a basis for artificial
evolution.
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