Variational autoencoders

Neural networks
(Bishop 1994)

Variational autoencoders (VAEs) are a type of generative Autoencoders.

They use a Bayesian latent encoding for the input dataset.

VAEs vs. GANs

VAEs have fallen out of fashion when GANs became popular, because they were able to get visually interesting results more easily. However, some works a few years later seem to show that they have similar potential (Vahdat, Kautz 2020).


  1. . . "Mixture Density Networks". Aston University.
  2. . . "NVAE: A Deep Hierarchical Variational Autoencoder". Arxiv:2007.03898 [cs, Stat].
Last changed | authored by


← Back to Notes